A383157 a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the divisors of n.
0, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 7, 1, 3, 3, 2, 1, 7, 1, 7, 3, 3, 1, 13, 1, 3, 3, 7, 1, 7, 1, 5, 3, 3, 3, 13, 1, 3, 3, 13, 1, 7, 1, 7, 7, 3, 1, 21, 1, 7, 3, 7, 1, 13, 3, 13, 3, 3, 1, 5, 1, 3, 7, 3, 3, 7, 1, 7, 3, 7, 1, 11, 1, 3, 7, 7, 3, 7, 1, 21, 2, 3, 1, 5, 3
Offset: 1
Examples
Fractions begin with 0, 1/2, 1/2, 1, 1/2, 3/4, 1/2, 3/2, 1, 3/4, 1/2, 7/6, ... 4 has 3 divisors: 1, 2 = 2^1 and 4 = 2^2. The maximum exponents in their prime factorizations are 0, 1 and 2, respectively. Therefore, a(4) = numerator((0 + 1 + 2)/3) = numerator(1) = 1. 12 has 6 divisors: 1, 2 = 2^1, 3 = 3^1, 4 = 2^2, 6 = 2 * 3 and 12 = 2^2 * 3. The maximum exponents in their prime factorizations are 0, 1, 1, 2, 1 and 2, respectively. Therefore, a(12) = numerator((0 + 1 + 1 + 2 + 1 + 2)/6) = numerator(7/6) = 7.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Amiram Eldar, Plot of (Sum_{k=1..n} a(k)/A383158(k))/(c_1*n - c_2*n/sqrt(log(n))) for n = 10^(1..10).
Crossrefs
Programs
-
Mathematica
emax[n_] := If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]; a[n_] := Numerator[DivisorSum[n, emax[#] &] / DivisorSigma[0, n]]; Array[a, 100]
-
PARI
emax(n) = if(n == 1, 0, vecmax(factor(n)[,2])); a(n) = my(f = factor(n)); numerator(sumdiv(n, d, emax(d)) / numdiv(f));
Formula
Sum_{k=1..n} a(k)/A383158(k) ~ c_1 * n - c_2 * n /sqrt(log(n)), where c_1 = m(2) + Sum_{k>=3} (k-1) * (m(k) - m(k-1)) = 1.27968644485944694957... is the asymptotic mean of the fractions a(k)/A383158(k), m(k) = Product_{p prime} (1 + (1-1/p) * Sum_{i>=k} (k/(i+1) - 1)/p^i is the asymptotic mean of the ratio between the number of k-free divisors and the number of divisors, e.g., m(2) = A308043 and m(3) = A361062, and c_2 = A345231 = 0.54685595528047446684... .
Comments