cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383159 The sum of the maximum exponents in the prime factorizations of the unitary divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 7, 1, 5, 3, 3, 3, 6, 1, 3, 3, 7, 1, 7, 1, 5, 5, 3, 1, 9, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 11, 1, 3, 5, 6, 3, 7, 1, 5, 3, 7, 1, 8, 1, 3, 5, 5, 3, 7, 1, 9, 4, 3, 1, 11, 3, 3, 3
Offset: 1

Views

Author

Amiram Eldar, Apr 18 2025

Keywords

Comments

First differs from A032741 at n = 36, and from A305611 and A325770 at n = 30.
a(n) depends only on the prime signature of n (A118914).

Examples

			4 has 2 unitary divisors: 1 and 4 = 2^2. The maximum exponents in their prime factorizations are 0 and 2, respectively. Therefore, a(4) = 0 + 2 = 2.
12 has 4 divisors: 1, 3 = 3^1, 4 = 2^2 and 12 = 2^2 * 3. The maximum exponents in their prime factorizations are 0, 1, 2 and 2, respectively. Therefore, a(12) = 0 + 1 + 2 + 2 = 5.
		

Crossrefs

Programs

  • Mathematica
    emax[n_] := If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]; a[n_] := DivisorSum[n, emax[#] &, CoprimeQ[#, n/#] &]; Array[a, 100]
    (* second program: *)
    a[n_] := If[n == 1, 0, Module[{e = FactorInteger[n][[;; , 2]], emax, v}, emax = Max[e]; v = Table[Times @@ (If[# < k + 1, 2, 1] & /@ e), {k, 1, emax}]; v[[1]] + Sum[k*(v[[k]] - v[[k - 1]]), {k, 2, emax}] - 1]]; Array[a, 100]
  • PARI
    emax(n) = if(n == 1, 0, vecmax(factor(n)[,2]));
    a(n) = sumdiv(n, d, (gcd(d, n/d) == 1) * emax(d));
    
  • PARI
    a(n) = if(n == 1, 0, my(e = factor(n)[, 2], emax = vecmax(e), v); v = vector(emax, k, vecprod(apply(x ->if(x < k+1, 2, 1), e))); v[1] + sum(k = 2, emax, k * (v[k]-v[k-1])) - 1);

Formula

a(n) = Sum_{d|n, gcd(d, n/d) = 1} A051903(d).
a(n) = A034444(n) * A383160(n)/A383161(n).
a(n) <= A383156(n), with equality if and only if n is squarefree (A005117).
a(n) = utau(n, 2) - 1 + Sum_{k=2..A051903(n)} k * (utau(n, k+1) - utau(n, k)), where utau(n, k) is the number of k-free unitary divisors of n (k-free numbers are numbers that are not divisible by a k-th power other than 1). For a given k >= 2, utau(n, k) is a multiplicative function with utau(p^e, k) = 2 if e < k, and 1 otherwise. E.g., utau(n, 2) = A056671(n), utau(n, 3) = A365498(n), and utau(n, 4) = A365499(n).
Sum_{k=1..n} a(k) ~ c_1 * n * log(n) + c_2 * n, where c_1 = c(2) + Sum_{k>=3} (k-1) * (c(k) - c(k-1)) = 0.91974850283445458744..., c(k) = Product_{p prime} (1 - 1/p^2 - 1/p^k + 1/p^(k+1)), c_2 = -1 + (2*gamma - 1)*c_1 + d(2) + Sum_{k>=3} (k-1) * (d(k) - d(k-1)) = -0.50780794945146599739..., d(k) = c(k) * Sum_{p prime} (2*p^(k-1) + k*p - k - 1) * log(p) / (p^(k+1) - p^(k-1) - p + 1), and gamma is Euler's constant (A001620).

A383161 a(n) is the denominator of the mean of the maximum exponents in the prime factorizations of the unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 2, 1, 4, 2, 4, 2, 4, 4, 1, 2, 4, 2, 4, 4, 4, 2, 4, 1, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 2, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 1, 2, 4, 4, 4, 4, 8, 2, 4, 1, 4, 2, 8, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Apr 18 2025

Keywords

Comments

a(n) depends only on the prime signature of n (A118914).

Examples

			Fractions begin with 0, 1/2, 1/2, 1, 1/2, 3/4, 1/2, 3/2, 1, 3/4, 1/2, 5/4, ...
4 has 2 unitary divisors: 1 and 4 = 2^2. The maximum exponents in their prime factorizations are 0 and 2, respectively. Therefore, a(4) = denominator((0 + 2)/2) = denominator(1) = 1.
12 has 4 unitary divisors: 1, 3 = 3^1, 4 = 2^2 and 12 = 2^2 * 3. The maximum exponents in their prime factorizations are 0, 1, 2 and 2, respectively. Therefore, a(12) = denominator((0 + 1 + 2 + 2)/4) = denominator(5/4) = 4.
		

Crossrefs

The unitary version of A383158.

Programs

  • Mathematica
    emax[n_] := If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]; a[n_] := Denominator[DivisorSum[n, emax[#] &, CoprimeQ[#, n/#] &] / 2^PrimeNu[n]]; Array[a, 100]
  • PARI
    emax(n) = if(n == 1, 0, vecmax(factor(n)[,2]));
    a(n) = my(f = factor(n)); denominator(sumdiv(n, d, emax(d) * (gcd(d, n/d) == 1)) / (1 << omega(f)));

Formula

a(n) = denominator(Sum_{d|n, gcd(d, n/d) = 1} A051903(d) / A034444(n)) = denominator(A383159(n) / A034444(n)).
a(A056798(n)) = 1. a(n) = 1 also for other numbers: 72, 108, 200, 288, 392, 500, 675, 800, 968, 972, ...
Showing 1-2 of 2 results.