cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383171 Expansion of e.g.f. log(1 + log(1 - 2*x)/2)^2 / 2.

Original entry on oeis.org

0, 0, 1, 9, 91, 1090, 15298, 247352, 4537132, 93195696, 2120623984, 52973194560, 1441635171040, 42464913775232, 1346297567292416, 45715740985471744, 1655552663185480448, 63698261991541393408, 2595107348458704209920, 111613055867327344582656
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=2, n, 2^(n-k)*abs(stirling(n, k, 1)*stirling(k, 2, 1)));

Formula

a(n) = Sum_{k=2..n} 2^(n-k) * |Stirling1(n,k) * Stirling1(k,2)|.
a(n) ~ sqrt(Pi) * log(n) * 2^(n + 1/2) * n^(n - 1/2) / (exp(1) - exp(-1))^n * (1 + (gamma + log(2) - log(exp(2)-1))/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Apr 18 2025

A383172 Expansion of e.g.f. -log(1 + log(1 - 2*x)/2)^3 / 6.

Original entry on oeis.org

0, 0, 0, 1, 18, 295, 5115, 96838, 2012724, 45825148, 1137703140, 30643915984, 891001127016, 27835772321344, 930387252759328, 33141746095999552, 1253756533365348992, 50210676392866266880, 2122613151692627299584, 94470824166941637093376
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=3, n, 2^(n-k)*abs(stirling(n, k, 1)*stirling(k, 3, 1)));

Formula

a(n) = Sum_{k=3..n} 2^(n-k) * |Stirling1(n,k) * Stirling1(k,3)|.
Showing 1-2 of 2 results.