A383178 Numbers k such that omega(k) = 4 and p^omega(k) < k^(1/4) < lpf(k)^(omega(k)+1) for all primes p | k such that p > lpf(k), where lpf = A020639(k).
81719, 268801, 565471, 626603, 631997, 657169, 700321, 799459, 838457, 893513, 916453, 1108927, 1212083, 1239389, 1271209, 1354681, 1366817, 1408637, 1420763, 1500313, 1527619, 1574359, 1602137, 1639877, 1700557, 1719871, 1751173, 1758203, 1775341, 1783511, 1843969
Offset: 1
Keywords
Examples
Table of n, a(n), prime decomposition of a(n), and A010846(n) = c(n) for n = 1..12: n a(n) facs(a(n)) c(n) p*r^3 -------------------------------------------------- 1 81719 11*17*19*23 51 11*19^3 = 75449 2 268801 13*23*29*31 50 13*29^3 = 317057 3 565471 17*29*31*37 51 17*31^3 = 506447 4 626603 17*29*31*41 51 17*31^3 = 506447 5 631997 19*29*31*37 51 19*31^3 = 566029 6 657169 17*29*31*43 51 17*31^3 = 506447 7 700321 19*29*31*41 51 19*31^3 = 566029 8 799459 17*31*37*41 50 17*37^3 = 861101 9 838457 17*31*37*43 50 17*37^3 = 861101 10 893513 19*31*37*41 50 19*37^3 = 962407 11 916453 17*31*37*47 51 17*37^3 = 861101 12 1108927 17*37*41*43 50 17*41^3 = 1171657 Let S(k) = row k of A162306 = {m <= k : rad(m) | k}. Writing p^a*q^b*r^c*s^d instead as "abcd" (i.e., catenating prime power exponents), the following combinations are in S(a(n)). In brackets we show p*r^3, which is in S(a(n)) for n such that c(n) = 51, but not in S(a(n)) for n such that c(n) = 50. 0000 1000 2000 3000 4000 0010 1010 2010 3010 0020 1020 2020 0030 [1030] 0100 1100 2100 3100 0110 1110 2110 0120 1120 0200 1200 2200 0210 1210 0300 1300 . 0001 1001 2001 3001 0011 1011 2011 0021 0101 1101 2101 0111 1111 0201 1201 . 0002 1002 2002 0012 0102 . 0003
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Hasse diagram of R(268801) with logarithmic vertical scale. Gray represents the empty product, red represents primes, gold represents proper prime powers, green squarefree composites, and blue numbers that are neither squarefree nor prime powers.
- Michael De Vlieger, Plot prime(i) | a(n) at (x,y) = (n,i) for n = 1..2048, 8X vertical exaggeration. The green bar at the bottom of the graph emphasizes the x axis that rides on the top edge of the bar.
Programs
-
Mathematica
f[om_, lm_ : 0] := Block[{f, i, j, k, nn, w}, i = Abs[om]; j = 1; If[lm == 0, nn = Times @@ Prime@ Range[i], nn = Abs[lm]]; w = ConstantArray[1, i]; Union@ Reap[Do[ While[Set[k, Times @@ Map[Prime, Accumulate@w]]; k <= nn, If[Or[k == 1, Union[#2] == #1 - 1 & @@ TakeDrop[Map[Floor@Log[#, k] &, FactorInteger[k][[All, 1]] ], 1] ], Sow[k]]; j = 1; w[[-j]]++]; If[j == i, Break[], j++; w[[-j]]++; w = PadRight[w[[;; -j]], i, 1]], {n, Infinity}] ][[-1, 1]] ]; f[4, 2000000]
Comments