A383195 Primes that are the concatenation of three primes, of which two are equal.
223, 227, 233, 277, 337, 353, 373, 557, 577, 727, 733, 757, 773, 1733, 1777, 1933, 2213, 2237, 2243, 2267, 2273, 2297, 2333, 2377, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3413, 3433, 3533, 3593, 3613, 3673, 3733, 3793, 3833, 4133, 4177, 4733, 5333, 5519, 5531, 5573
Offset: 1
Keywords
Examples
a(3) = 233 is a term because 233 is prime and is the concatenation of the primes 2, 3 and 3, of which two are equal.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local m, i, j, ni, nj, np, n3; if not isprime(n) then return false fi; m:= ilog10(n); for i from 1 to m-1 do ni:= n mod 10^i; if ni < 10^(i-1) or not isprime(ni) then next fi; np:= (n-ni)/10^i; for j from 1 to m-i do nj:= np mod 10^j; if nj < 10^(j-1) then next fi; n3:= (np-nj)/10^j; if nops({ni, nj, n3})<3 and isprime(nj) and isprime(n3) then return true fi; od od; false end proc: select(filter, [seq(i,i=3..10000,2)]);
Comments