cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383211 Numbers of the form p^e where p is prime and e > 1 is squarefree.

Original entry on oeis.org

4, 8, 9, 25, 27, 32, 49, 64, 121, 125, 128, 169, 243, 289, 343, 361, 529, 729, 841, 961, 1024, 1331, 1369, 1681, 1849, 2048, 2187, 2197, 2209, 2809, 3125, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 8192, 9409, 10201, 10609, 11449, 11881, 12167
Offset: 1

Views

Author

Peter Luschny, Apr 21 2025

Keywords

Crossrefs

Programs

  • Mathematica
    lmt = 12500; Sort[ Select[ Flatten[ Table[ Prime[p]^If[ SquareFreeQ@ exp, exp, 0], {p, PrimePi@ Sqrt@ lmt}, {exp, 2, Log[Prime@ p, lmt]} ]], # != 1 &]] (* Robert G. Wilson v, May 05 2025 *)
  • PARI
    isok(k) = {my(e = isprimepower(k)); e > 1 && issquarefree(e);} \\ Amiram Eldar, May 28 2025
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_log, primerange
    def A383211(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1		
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return n+x-sum(g(integer_log(x,p)[0])-1 for p in primerange(isqrt(x)+1))
        return bisection(f,n,n) # Chai Wah Wu, May 28 2025
  • SageMath
    def A383211List(upto: int) -> list[int]:
        L = []
        for p in prime_range(2, upto + 1):
            E = A383266(upto, p)
            for e in range(2, E+1):
                if is_squarefree(e):
                    n = p^e
                    if n <= upto:
                        L.append(n)
        return sorted(L)
    print(A383211List(12222))
    

Formula

Sum_{n>=1} 1/a(n) = Sum_{n>=2} P(A005117(n)) = 0.68983147577186859321..., where P(s) is the prime zeta function. - Amiram Eldar, May 28 2025