cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383225 a(n) = sqrt(1 + P(n)*P(n+1)*P(n+2)*P(n+3)) where P(n) = A000129(n) are the Pell numbers.

Original entry on oeis.org

1, 11, 59, 349, 2029, 11831, 68951, 401881, 2342329, 13652099, 79570259, 463769461, 2703046501, 15754509551, 91824010799, 535189555249, 3119313320689, 18180690368891, 105964828892651, 617608282987021, 3599684869029469, 20980500931189799, 122283320718109319, 712719423377466121
Offset: 0

Views

Author

Jules Beauchamp, Apr 26 2025

Keywords

Comments

The ratios a(n+1)/a(n) converge to 2*sqrt(2)+3 (A156035).

Examples

			a(5) = sqrt(1 + 29*70*169*408) = 11831.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, 5, -1}, {1, 11, 59}, 25] (* Amiram Eldar, Apr 26 2025 *)
  • PARI
    Vec((1+6*x-x^2)/((1-6*x+x^2)*(1+x))+O(x^25)) \\ Joerg Arndt, Apr 26 2025
    
  • PARI
    pell(n) = ([2, 1; 1, 0]^n)[2, 1];
    a(n) = pell(n+1)*pell(n+2)-(-1)^n; \\ Seiichi Manyama, May 25 2025

Formula

a(n) = P(n+1)*P(n+2) - (-1)^n. [Corrected by Seiichi Manyama, May 25 2025]
G.f.: (1+6*x-x^2)/((1-6*x+x^2)*(1+x)). - Joerg Arndt, Apr 26 2025