A383237 Primes p such that x^5+x+1 has no roots modulo p.
2, 29, 41, 47, 71, 131, 179, 197, 233, 239, 257, 269, 311, 353, 443, 461, 491, 509, 587, 647, 653, 683, 761, 857, 863, 887, 929, 947, 1013, 1061, 1223, 1277, 1283, 1289, 1301, 1361, 1373, 1409, 1427, 1439, 1499, 1511, 1559, 1619, 1637, 1733, 1823, 1973, 1979
Offset: 1
Keywords
Examples
a(1) = 2 because 0^5+0+1 = 1 and 1^5+1+1 = 3; neither is 0 mod 2. a(2) = 29, as for p = 3, 5, 7, 11, 13, 17, 19, 23, x^5+x+1 has a root modulo p, namely 1, 2, 2, 9, 3, 10, 3, 15, respectively.
Links
- Jayde S. Massmann, Table of n, a(n) for n = 1..1000
Crossrefs
Subsequence of A003627.
Programs
-
PARI
isok(p) = if (isprime(p), !#polrootsmod(x^5+x+1, p)); \\ Michel Marcus, Apr 20 2025
Comments