A383238 A sequence constructed by greedily sampling the Poisson distribution for parameter value 1, 1/(e*(i-1)!) to minimize discrepancy selecting the smallest value in case of ties.
1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 5, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 5, 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 6, 1, 2, 3, 1, 2
Offset: 1
Keywords
Examples
Let p(k) denote the probability of k and c(k) denote the count of occurrences of k so far, then the expected occurrences of k at n-th step are given by n*p(k). We subtract the actual occurrences c(k) from the expected occurrences and pick the one with the highest value. | n | n*p(1) - c(1) | n*p(2) - c(2) | n*p(3) - c(3) | choice | |---|---------------|---------------|---------------|--------| | 1 | 0.367 | 0.367 | 0.183 | 1 | | 2 | -0.264 | 0.735 | 0.367 | 2 | | 3 | 0.103 | 0.103 | 0.551 | 3 | | 4 | 0.471 | 0.471 | -0.264 | 1 | | 5 | -0.160 | 0.839 | -0.080 | 2 |
Links
- Jwalin Bhatt, Table of n, a(n) for n = 1..10000
- Wikipedia, Poisson distribution
Programs
-
Mathematica
probCountDiff[j_,k_,count_]:=N[k/(E*Factorial[j-1])]-Lookup[count,j,0] samplePDF[n_]:=Module[{coeffs,unreachedVal,counts,k,probCountDiffs,mostProbable}, coeffs=ConstantArray[0,n];unreachedVal=1;counts=<||>; Do[probCountDiffs=Table[probCountDiff[i,k,counts],{i,1,unreachedVal}]; mostProbable=First@FirstPosition[probCountDiffs,Max[probCountDiffs]]; If[mostProbable==unreachedVal,unreachedVal++];coeffs[[k]]=mostProbable; counts[mostProbable]=Lookup[counts,mostProbable,0]+1;,{k,1,n}];coeffs] A383238=samplePDF[120]
Comments