A383243 Primes of the form p(k)*p(k+1)*(p(k+1) - p(k)) - 1 sorted by increasing k.
5, 29, 307, 883, 1747, 4001, 6067, 26227, 108883, 152083, 424481, 311347, 396883, 848201, 580627, 1713709, 1814509, 864883, 5092973, 3046789, 3386989, 1664083, 2581961, 2196307, 2304307, 2377747, 6955309, 3526867, 4088467, 20916053, 4796083, 7339361
Offset: 1
Keywords
Programs
-
Maple
q:= 2; R:= NULL: count:= 0: while count < 100 do p:= q; q:= nextprime(q); v:= p*q*(q-p)-1; if isprime(v) then R:= R,v; count:= count+1 fi; od: R; # Robert Israel, May 11 2025
-
Mathematica
z = 200; p[n_] := Prime[n]; f[n_] := p[n]*p[n + 1]*(p[n + 1] - p[n]) t1 = Table[f[n] - 1, {n, 1, z}]; (* A383241 *) t2 = Table[f[n] + 1, {n, 1, z}]; (* A383242 *) Select[t1, PrimeQ[#] &] (* A383243 *) Select[t2, PrimeQ[#] &] (* A383244 *)
Comments