cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A382464 Positive integers that contain an even digit d immediately preceded by a digit >= d.

Original entry on oeis.org

10, 20, 22, 30, 32, 40, 42, 44, 50, 52, 54, 60, 62, 64, 66, 70, 72, 74, 76, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 122, 130, 132, 140, 142, 144, 150, 152, 154, 160, 162, 164, 166, 170, 172, 174, 176, 180
Offset: 1

Views

Author

Paolo Xausa, Mar 28 2025

Keywords

Comments

Conjecture: these are the numbers missing from A382462.

Crossrefs

Programs

  • Mathematica
    A382464Q[k_] := MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?EvenQ} /; i >= j];
    Select[Range[200], A382464Q]
  • Python
    def ok(n):
        s = str(n)
        return any(d in "02468" and s[i-1]>=d for i, d in enumerate(s) if i > 0)
    print([k for k in range(181) if ok(k)]) # Michael S. Branicky, Apr 30 2025

A383061 Positive integers that contain an odd digit d immediately preceded by a digit >= d.

Original entry on oeis.org

11, 21, 31, 33, 41, 43, 51, 53, 55, 61, 63, 65, 71, 73, 75, 77, 81, 83, 85, 87, 91, 93, 95, 97, 99, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 131, 133, 141, 143, 151, 153, 155, 161, 163, 165, 171, 173, 175, 177, 181, 183, 185, 187, 191, 193, 195, 197, 199
Offset: 1

Views

Author

Paolo Xausa, Apr 18 2025

Keywords

Comments

Conjecture: these are the numbers missing from A383059.

Crossrefs

Programs

  • Mathematica
    A383061Q[k_] := MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i >= j];
    Select[Range[200], A383061Q]
  • Python
    def ok(n):
        s = str(n)
        return any(s[i] <= s[i-1] for i in range(1, len(s)) if s[i] in "13579")
    print([k for k in range(200) if ok(k)]) # Michael S. Branicky, Apr 19 2025

A382937 Positive integers that contain an odd digit d immediately preceded by a digit <= d.

Original entry on oeis.org

11, 13, 15, 17, 19, 23, 25, 27, 29, 33, 35, 37, 39, 45, 47, 49, 55, 57, 59, 67, 69, 77, 79, 89, 99, 101, 103, 105, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 145, 147, 149, 150
Offset: 1

Views

Author

Paolo Xausa, Apr 14 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A382937Q[k_] := MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i <= j];
    Select[Range[200], A382937Q]
  • Python
    def ok(n):
        s = str(n)
        return any(s[i+1] >= s[i] for i in range(len(s)-1) if s[i+1] in "13579")
    print([k for k in range(1, 151) if ok(k)]) # Michael S. Branicky, Apr 14 2025

A383245 Nonnegative integers that contain the digit 0, or an even digit d immediately followed by a digit >= d.

Original entry on oeis.org

0, 10, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 44, 45, 46, 47, 48, 49, 50, 60, 66, 67, 68, 69, 70, 80, 88, 89, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 140, 144, 145, 146, 147, 148, 149, 150, 160, 166
Offset: 1

Views

Author

Paolo Xausa, Apr 20 2025

Keywords

Comments

Conjecture: these are the numbers missing from A342043.

Crossrefs

Programs

  • Mathematica
    A383245Q[k_] := MemberQ[#, 0] || MemberQ[Partition[#, 2, 1], {i_?EvenQ, j_} /; j >= i] & [IntegerDigits[k]];
    Select[Range[0, 200], A383245Q]
  • Python
    def ok(n):
        if n%10 == 0: return True
        s = str(n)
        return any(d in "02468" and s[i]>=d for i, d in enumerate(s, 1) if i < len(s))
    print([k for k in range(167) if ok(k)]) # Michael S. Branicky, Apr 28 2025

A383247 Positive integers that contain the digit 9, or an odd digit d immediately followed by a digit <= d.

Original entry on oeis.org

9, 10, 11, 19, 29, 30, 31, 32, 33, 39, 49, 50, 51, 52, 53, 54, 55, 59, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 129, 130, 131, 132, 133
Offset: 1

Views

Author

Paolo Xausa, Apr 25 2025

Keywords

Comments

Conjecture: these are the numbers missing from A342044.

Crossrefs

Programs

  • Mathematica
    A383247Q[k_] := MemberQ[#, 9] || MemberQ[Partition[#, 2, 1], {i_?OddQ, j_} /; j <= i] & [IntegerDigits[k]];
    Select[Range[200], A383247Q]
  • Python
    def ok(n):
        s = str(n)
        return "9" in s or any(d in "13579" and s[i]<=d for i, d in enumerate(s, 1) if i < len(s))
    print([k for k in range(134) if ok(k)]) # Michael S. Branicky, Apr 28 2025

A383250 Nonnegative integers not ending with the digit 1 and such that every odd digit except the rightmost is immediately followed by a smaller digit.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 100, 102, 103
Offset: 1

Views

Author

Paolo Xausa, Apr 26 2025

Keywords

Comments

Conjecture: these are the terms of A342045, sorted.
From Quinn Savitt, Apr 29 2025: (Start)
Theorem: These are the terms of A342045, sorted.
The proof formally defines an extendibility condition: a finite set of selected numbers remains extendible if, for every finite subset, there exists a new number satisfying the "odd digit implies next smaller digit" rule and not ending in 1.
Using induction and monotonicity of extendibility, it follows that every number satisfying these conditions eventually appears in the greedy construction of A342045. This implies that the sequence is a sorted version of A342045. (End)

Crossrefs

Programs

  • Mathematica
    A383250Q[k_] := Last[#] != 1 && FreeQ[Partition[#, 2, 1], {i_?OddQ, j_} /; j >= i] & [IntegerDigits[k]];
    Select[Range[0, 200], A383250Q]
  • Python
    def ok(n):
        if n%10 == 1: return False
        s = str(n)
        return all(d in "02468" or s[i]Michael S. Branicky, Apr 28 2025

A383500 Positive integers that contain the digit 9, or an odd digit d immediately preceded by a digit <= d.

Original entry on oeis.org

9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 33, 35, 37, 39, 45, 47, 49, 55, 57, 59, 67, 69, 77, 79, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137
Offset: 1

Views

Author

Paolo Xausa, Apr 29 2025

Keywords

Comments

Conjecture: these are the numbers missing from A382935.
Theorem: This sequence is the complement of A382935. - Quinn Savitt, May 08 2025

Crossrefs

Programs

  • Mathematica
    A383500Q[k_] := MemberQ[#, 9] || MemberQ[Partition[#, 2, 1], {i_, j_?OddQ} /; i <= j] & [IntegerDigits[k]];
    Select[Range[200], A383500Q]
  • Python
    def ok(n):
        s = str(n)
        return "9" in s or any(d in "13579" and s[i-1]<=d for i, d in enumerate(s) if i > 0)
    print([k for k in range(134) if ok(k)]) # Michael S. Branicky, Apr 29 2025
Showing 1-7 of 7 results.