A383263 Union of prime powers (A246655) and numbers that are not squarefree (A013929).
2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 88, 89, 90, 92, 96, 97, 98, 99, 100, 101, 103
Offset: 1
Keywords
Programs
-
Maple
with(NumberTheory): IsPrimePower := n -> nops(PrimeFactors(n)) = 1: IsA383263 := n -> IsPrimePower(n) or not IsSquareFree(n): select(IsA383263, [seq(1..104)]);
-
Mathematica
Select[Range[120], Or[PrimePowerQ[#], ! SquareFreeQ[#]] &] (* Michael De Vlieger, Apr 27 2025 *)
-
PARI
isok(k) = isprimepower(k) || !issquarefree(k);
-
Python
from math import isqrt from sympy import mobius, primepi def A383263(n): def f(x): return int(n+x+sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1))-primepi(x)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Apr 27 2025
-
SageMath
def isA383263(n: int) -> bool: return is_prime_power(n) or not is_squarefree(n)
Comments