cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383276 Numbers of the form A034444(k) * k.

Original entry on oeis.org

1, 4, 6, 8, 10, 14, 16, 18, 22, 24, 26, 32, 34, 38, 40, 46, 48, 50, 54, 56, 58, 60, 62, 64, 72, 74, 80, 82, 84, 86, 88, 94, 96, 98, 104, 106, 112, 118, 122, 128, 132, 134, 136, 140, 142, 144, 146, 152, 156, 158, 160, 162, 166, 176, 178, 180, 184, 192, 194, 200
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2025

Keywords

Comments

The sorted values of {abs(A298473(n))}.
Numbers m that have a divisor d such that A034444(d) * d = m.
All the terms above 1 are even since A034444(k) is even for k >= 2.
A number m is a term if and only if either A007814(m) = A005087(m) or A007814(m) > A005087(m) + 1.

Crossrefs

The unitary analog of A036438.
Subsequences: A100484, A138929 \ {2}, A151821.
Cf. A005087, A007814, A034444, A298473, A383277 (characteristic function), A383278 (number of terms not exceeding n), A383279.

Programs

  • Mathematica
    q[k_] := AnyTrue[Divisors[k], 2^PrimeNu[#] * # == k &]; Select[Range[200], q]
    (* second program: *)
    q[k_] := Module[{e = IntegerExponent[k, 2], w}, w = PrimeNu[k/2^e]; e > w + 1 || e == w]; Select[Range[200], q]
  • PARI
    isok(k) = fordiv(k, d, if((1 << omega(d)) * d == k, return(1))); 0;
    
  • PARI
    isok(k) = {my(e = valuation(k, 2), w = omega(k >> e)); e > w + 1 || e == w;}

Formula

a(n) = A383279(n) * A034444(A383279(n)).