A383308 Number of integer partitions of n that can be partitioned into sets with a common sum.
1, 1, 2, 3, 4, 4, 8, 6, 10, 13, 15, 13, 31
Offset: 0
Examples
The multiset (3,2,2,1,1) has partition {{3},{1,2},{1,2}}, so is counted under a(9). The a(1) = 1 through a(9) = 13 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (11) (21) (22) (32) (33) (43) (44) (54) (111) (31) (41) (42) (52) (53) (63) (1111) (11111) (51) (61) (62) (72) (222) (421) (71) (81) (321) (1111111) (431) (333) (2211) (521) (432) (111111) (2222) (531) (3311) (621) (11111111) (3321) (32211) (222111) (111111111)
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&SameQ@@Total/@#&]]>0&]],{n,0,10}]
Comments