A383310 Number of ways to choose a strict multiset partition of a factorization of n into factors > 1.
1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 8, 1, 3, 3, 9, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 5, 8, 1, 12, 1, 19, 3, 3, 3, 24, 1, 3, 3, 20, 1, 12, 1, 8, 8, 3, 1, 46, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 38, 1, 3, 8, 37, 3, 12, 1, 8, 3, 12, 1, 67, 1, 3, 8, 8, 3, 12, 1, 46, 9, 3
Offset: 1
Keywords
Examples
The a(36) = 24 choices: {{2,2,3,3}} {{2},{2,3,3}} {{2},{3},{2,3}} {{2,2,9}} {{3},{2,2,3}} {{2},{3},{6}} {{2,3,6}} {{2,2},{3,3}} {{2,18}} {{2},{2,9}} {{3,3,4}} {{9},{2,2}} {{3,12}} {{2},{3,6}} {{4,9}} {{3},{2,6}} {{6,6}} {{6},{2,3}} {{36}} {{2},{18}} {{3},{3,4}} {{4},{3,3}} {{3},{12}} {{4},{9}}
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Sum[Length[Select[mps[y],UnsameQ@@#&]],{y,facs[n]}],{n,30}]