cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383324 a(n) = round(3^n/5).

Original entry on oeis.org

0, 1, 2, 5, 16, 49, 146, 437, 1312, 3937, 11810, 35429, 106288, 318865, 956594, 2869781, 8609344, 25828033, 77484098, 232452293, 697356880, 2092070641, 6276211922, 18828635765, 56485907296, 169457721889, 508373165666, 1525119496997, 4575358490992, 13726075472977
Offset: 0

Views

Author

Chai Wah Wu, Apr 23 2025

Keywords

Crossrefs

Cf. A178543 (partial sums).

Programs

  • Mathematica
    Round[3^Range[0, 30]/5] (* Paolo Xausa, Apr 25 2025 *)
  • Python
    def A383324(n): return (3**n+2)//5

Formula

a(n) = floor((3^n+2)/5).
a(n) = 3*a(n-1) - a(n-2) + 3*a(n-3) for n > 2.
G.f.: x*(x - 1)/((3*x - 1)*(x^2 + 1)).
E.g.f.: (exp(5*x) - cos(x) + 2*sin(x))/5. - Stefano Spezia, Apr 24 2025