A383333 Square array read by antidiagonals: T(n,k) is the number of n-tuples of nonnegative integers, not all equal to 0, with a shortest vectorial addition chain of length k; n >= 1, k >= 0.
1, 1, 2, 2, 3, 3, 3, 7, 6, 4, 5, 16, 16, 10, 5, 9, 37, 46, 30, 15, 6, 15, 91, 134, 101, 50, 21, 7, 26, 229, 411, 349, 190, 77, 28, 8, 44, 585, 1319, 1264, 751, 323, 112, 36, 9, 78, 1528, 4368, 4817, 3106, 1426, 511, 156, 45, 10, 136, 4034, 14925, 19131, 13532, 6586, 2478, 766, 210, 55, 11
Offset: 1
Examples
Array begins: n\k| 0 1 2 3 4 5 6 7 ---+----------------------------------- 1 | 1 1 2 3 5 9 15 26 2 | 2 3 7 16 37 91 229 585 3 | 3 6 16 46 134 411 1319 4368 4 | 4 10 30 101 349 1264 4817 19131 5 | 5 15 50 190 751 3106 13532 61748 6 | 6 21 77 323 1426 6586 32035 163594 There are 12 triples of nondecreasing nonnegative integers with a shortest addition chain of length 3. Counting also the permutations of these, we get T(3,3) = 46: (0, 0, 5): 3 (0, 0, 6): 3 (0, 0, 8): 3 (0, 1, 3): 6 (0, 1, 4): 6 (0, 2, 3): 6 (0, 2, 4): 6 (0, 3, 3): 3 (0, 4, 4): 3 (1, 1, 2): 3 (1, 2, 2): 3 (2, 2, 2): 1 Total: 46
Links
- Jorge Olivos, On vectorial addition chains, Journal of Algorithms 2 (1981), 13-21.
- E. G. Straus, Partial solution to problem 5125: Addition chains of vectors, Problems and solutions, The American Mathematical Monthly 71 (1964), 806-808.
- Edward G. Thurber and Neill M. Clift, Addition chains, vector chains, and efficient computation, Discrete Mathematics 344 (2021), 112200.
- Wikipedia, Vectorial addition chain.
Comments