A383338 Square array read by antidiagonals, where the n-th row is the coordination sequence of a certain tiling with an n-dimensional analog of the X pentomino (or Greek cross), n >= 1.
1, 2, 1, 2, 4, 1, 2, 8, 8, 1, 2, 12, 26, 14, 1, 2, 16, 56, 76, 20, 1, 2, 20, 98, 244, 150, 28, 1, 2, 24, 152, 578, 632, 296, 38, 1, 2, 28, 218, 1138, 1882, 1680, 558, 48, 1, 2, 32, 296, 1984, 4492, 6424, 4336, 896, 60, 1, 2, 36, 386, 3176, 9230, 18908, 21782, 8688, 1422, 74, 1
Offset: 1
Examples
Array begins: n\k| 0 1 2 3 4 5 6 7 8 ---+-------------------------------------------------- 1 | 1 2 2 2 2 2 2 2 2 2 | 1 4 8 12 16 20 24 28 32 3 | 1 8 26 56 98 152 218 296 386 4 | 1 14 76 244 578 1138 1984 3176 4774 5 | 1 20 150 632 1882 4492 9230 17040 29042 6 | 1 28 296 1680 6424 18908 46416 99904 194768 7 | 1 38 558 4336 21782 80838 241730 616584 1393906 8 | 1 48 896 8688 52896 232000 803232 2332896 5923776
Links
- Kiran S. Kedlaya, The 80th William Lowell Putnam Mathematical Competition, Dec 7 2019.
- Kiran S. Kedlaya, Solutions to the 80th William Lowell Putnam Mathematical Competition, Dec 7 2019.
- Yusuke Nakamura, Ryotaro Sakamoto, Takafumi Mase, and Junichi Nakagawa, Coordination sequences of crystals are of quasi-polynomial type, Acta Crystallographica A 77 (2021), 138-148.
- Eric Weisstein's World of Mathematics, Greek Cross.
- Index entries for sequences related to coordination sequences.
Formula
T(n,0) = 1.
T(n,1) = 2*A007980(n-1).
T(1,k) = A040000(k).
T(2,k) = A008574(k).
Empirically (do these formulas follow from the results of Nakamura et al.?):
T(3,k) = A005897(k).
T(4,k) = 10*k^3 - 7*k^2 + 13*k - 2 for k >= 1.
T(5,k) = (22/3)*k^4 - 4*k^3 + (50/3)*k^2 - 2*k + 2 for k >= 1.
T(6,k) = (32/5)*k^5 - 7*k^4 + 28*k^3 - 11*k^2 + (58/5)*k for k >= 1.
T(7,k) = (304/45)*k^6 - (284/15)*k^5 + (1237/18)*k^4 - 86*k^3 + (8777/90)*k^2 - (601/15)*k + 10 for k >= 1.
Comments