A383341 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * binomial(j+k,j)/(n-j)!.
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 11, 24, 1, 1, 5, 16, 53, 120, 1, 1, 6, 21, 88, 309, 720, 1, 1, 7, 26, 129, 568, 2119, 5040, 1, 1, 8, 31, 176, 897, 4288, 16687, 40320, 1, 1, 9, 36, 229, 1296, 7317, 36832, 148329, 362880, 1, 1, 10, 41, 288, 1765, 11296, 67365, 354688, 1468457, 3628800
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, ... 2, 3, 4, 5, 6, 7, 8, ... 6, 11, 16, 21, 26, 31, 36, ... 24, 53, 88, 129, 176, 229, 288, ... 120, 309, 568, 897, 1296, 1765, 2304, ... 720, 2119, 4288, 7317, 11296, 16315, 22464, ...
Crossrefs
Programs
-
PARI
a(n,k) = n!*sum(j=0, n, (-k)^(n-j)*binomial(j+k, j)/(n-j)!);
Formula
E.g.f. of column k: exp(-k*x) / (1-x)^(k+1).
A(0,k) = A(1,k) = 1; A(n,k) = n*A(n-1,k) + k*(n-1)*A(n-2,k).