cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383347 Numbers that have the same set of digits as the sum of the cubes of their digits.

Original entry on oeis.org

0, 1, 135, 137, 153, 173, 307, 315, 317, 351, 370, 371, 407, 470, 513, 531, 703, 704, 713, 730, 731, 740, 3007, 3070, 3700, 4007, 4070, 4700, 7003, 7004, 7030, 7040, 7300, 7400, 11112, 11113, 11121, 11131, 11211, 11311, 12111, 12599, 12959, 12995, 13111, 15299
Offset: 1

Views

Author

Jean-Marc Rebert, Apr 24 2025

Keywords

Comments

Contains 3*10^j + 7*10^k and 4*10^j + 7*10^k if j <> k and max(j,k) >= 2. - Robert Israel, Apr 25 2025

Examples

			135 and 1^3 + 3^3 + 5^3 = 153 have the same set of digits {1,3,5}, so 135 is a term.
		

Crossrefs

Cf. A046197 (a subsequence).

Programs

  • Maple
    filter:= proc(n) local L,t;
      L:= convert(n,base,10);
      convert(L,set) = convert(convert(add(t^3,t=L),base,10),set)
    end proc:
    select(filter, [$0 .. 10^5]); # Robert Israel, Apr 25 2025
  • Mathematica
    q[k_] := Module[{d = IntegerDigits[k]}, Union[d] == Union[IntegerDigits[Total[d^3]]]]; Select[Range[0, 16000], q] (* Amiram Eldar, Apr 24 2025 *)
  • PARI
    isok(k) = my(d=digits(k)); Set(d) == Set(digits(sum(i=1, #d, d[i]^3))); \\ Michel Marcus, Apr 24 2025
  • Python
    def ok(n): return set(s:=str(n)) == set(str(sum(int(d)**3 for d in s)))
    print([k for k in range(2*10**4) if ok(k)]) # Michael S. Branicky, Apr 24 2025