A383348 Triangle related to the partitions of n in three colors, read by rows.
9, 6, 243, 1, 243, 6561, 0, 90, 8748, 177147, 0, 15, 4860, 295245, 4782969, 0, 1, 1458, 216513, 9565938, 129140163, 0, 0, 252, 91854, 8680203, 301327047, 3486784401, 0, 0, 24, 24786, 4723920, 325241892, 9298091736, 94143178827, 0, 0, 1, 4374, 1712421, 215233605, 11622614670, 282429536481, 2541865828329
Offset: 1
Examples
Triangle begins: 9; 6, 243; 1, 243, 6561; 0, 90, 8748, 177147; 0, 15, 4860, 295245, 4782969; ...
References
- D. S. Gireesh and M. S. Mahadeva Naika, On 3-regular partitions in 3-colors, Indian J. Pure Appl. Math. 50 (2019), 137-148.
Links
- D. S. Gireesh and M. S. Mahadeva Naika, On 3-regular partitions in 3-colors, ResearchGate.
- B. Hemanthkumar and D. S. Gireesh, On ℓ-regular and 2-color partition triples modulo powers of 3, arXiv:2504.13507 [math.CO], 2025.
Crossrefs
Cf. A013733 (diagonal).
Programs
-
PARI
M(i,j) = if (j>i, return(0)); if (i==1, if (j==1, return(9))); if (i==2, if (j==1, return(6)); return(243)); if (i==3, if (j==1, return(1)); if (j==2, return(243)); return(6561)); if (i>=4, if (j==1, return(0)); 27*M(i-1,j-1) + 9*M(i-2,j-1) + M(i-3,j-1)); row(n) = vector(n, i, M(n, i));
Formula
T(i,j) = 27*T(i-1,j-1) + 9*T(i-2,j-1) + T(i-3,j-1).