cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383358 Numbers k >= 2 such that (S(k) - I(k)) / (k - 1) is an integer, where S(k) = Sum_{i=2..k} A007918(i) and I(k) = Sum_{i=2..k} A007917(i).

Original entry on oeis.org

2, 3, 16, 21, 23, 39, 49, 381, 396, 24963, 39762, 40101, 40276, 4431583, 21553054, 36244531, 2183957515, 2183971285, 2183971945, 3636636400, 3636636411, 6063744535, 16846463635, 28070695902, 215867952637, 359222008925, 597739400517, 597739400913, 597739426757
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 24 2025

Keywords

Examples

			k = 16: ((Sum_{i=2..k} A007918(i)) - (Sum_{i=2..k} A007917(i))) / (k - 1) = (150 - 120) / 15 = 2, thus k = 16 is a term.
		

References

  • Kenichiro Kashihara, Problem 10 in Comments and topics on Smarandache notions and problems, Erhus University Press, USA, 1996.

Crossrefs

Programs

  • Mathematica
    With[{m = 10^7}, (Position[Accumulate[Table[If[PrimeQ[n], 0, NextPrime[n] - NextPrime[n, -1]], {n, 2, m+1}]]/Range[m], ?IntegerQ] // Flatten) + 1] (* _Amiram Eldar, Apr 24 2025 *)
  • PARI
    list(lim) = {my(k = 0, c = 0, p = 2, g); forprime(q = 3, lim, g = q-p; k++; if(!(c % k), print1(k+1, ", ")); for(i = 1, g-1, c += g; k++; if(!(c % k), print1(k+1, ", "))); p = q);} \\ Amiram Eldar, Apr 24 2025

Extensions

a(10)-a(23) from Amiram Eldar, Apr 24 2025
a(24)-a(29) from Jinyuan Wang, Apr 28 2025