A383382
Expansion of e.g.f. exp(-3*x) / (1-x)^5.
Original entry on oeis.org
1, 2, 9, 48, 321, 2502, 22329, 223668, 2481921, 30187242, 399071529, 5694475608, 87197543361, 1425766728942, 24787205125209, 456477484618908, 8875541469155841, 181670665706512722, 3904395263350689609, 87898121215165479168, 2068411075529464370241, 50778930934558144895382
Offset: 0
A383341
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * binomial(j+k,j)/(n-j)!.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 11, 24, 1, 1, 5, 16, 53, 120, 1, 1, 6, 21, 88, 309, 720, 1, 1, 7, 26, 129, 568, 2119, 5040, 1, 1, 8, 31, 176, 897, 4288, 16687, 40320, 1, 1, 9, 36, 229, 1296, 7317, 36832, 148329, 362880, 1, 1, 10, 41, 288, 1765, 11296, 67365, 354688, 1468457, 3628800
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, ...
6, 11, 16, 21, 26, 31, 36, ...
24, 53, 88, 129, 176, 229, 288, ...
120, 309, 568, 897, 1296, 1765, 2304, ...
720, 2119, 4288, 7317, 11296, 16315, 22464, ...
-
a(n,k) = n!*sum(j=0, n, (-k)^(n-j)*binomial(j+k, j)/(n-j)!);
A383380
Expansion of e.g.f. exp(-2*x) / (1-x)^4.
Original entry on oeis.org
1, 2, 8, 40, 248, 1808, 15136, 142784, 1496960, 17254144, 216740864, 2945973248, 43065951232, 673626675200, 11224114860032, 198447384666112, 3710328985124864, 73136238041563136, 1515739708283944960, 32947698735175172096, 749499782353468522496, 17806903161183314378752
Offset: 0
Showing 1-3 of 3 results.