cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383414 Array read by ascending antidiagonals: A(n,k) = 4^n*(8*k + 7).

Original entry on oeis.org

7, 28, 15, 112, 60, 23, 448, 240, 92, 31, 1792, 960, 368, 124, 39, 7168, 3840, 1472, 496, 156, 47, 28672, 15360, 5888, 1984, 624, 188, 55, 114688, 61440, 23552, 7936, 2496, 752, 220, 63, 458752, 245760, 94208, 31744, 9984, 3008, 880, 252, 71, 1835008, 983040, 376832, 126976, 39936, 12032, 3520, 1008, 284, 79
Offset: 0

Views

Author

Stefano Spezia, Apr 26 2025

Keywords

Examples

			The array begins as:
      7,    15,    23,     31,     39,     47, ...
     28,    60,    92,    124,    156,    188, ...
    112,   240,   368,    496,    624,    752, ...
    448,   960,  1472,   1984,   2496,   3008, ...
   1792,  3840,  5888,   7936,   9984,  12032, ...
   7168, 15360, 23552,  31744,  39936,  48128, ...
  28672, 61440, 94208, 126976, 159744, 192512, ...
  ...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 12.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 246-247.

Crossrefs

Cf. A000302, A004215, A383415 (antidiagonal sums).
Row n=0 gives A004771.
Column k=0 gives A002042.

Programs

  • Mathematica
    A[n_,k_]:=4^n(8k+7); Table[A[n-k,k],{n,0,9},{k,0,n}]//Flatten

Formula

A(n,k) = A000302(n)*A004771(k).
G.f.: (7 + y)/((1 - 4*x)*(1 - y)^2).
E.g.f.: exp(4*x+y)*(7 + 8*y).