A383440 a(n) = (5*n + 3)!/((8*n^2 + 10*n + 3)*(n!)^2*(3*n + 2)!).
1, 16, 702, 42432, 3010700, 235282320, 19615029280, 1712821144320, 154870831986156, 14388837044278400, 1366276815032189060, 132069279628944665280, 12957831870375876372252, 1287484157116598357029120, 129316124278441748161584000, 13111175417326191857901849600
Offset: 0
Keywords
Links
- N. J. Wildberger and Dean Rubine, A Hyper-Catalan Series Solution to Polynomial Equations, and the Geode, Amer. Math. Monthly (2025), p. 17.
Programs
-
Maple
a := n -> ((5*n + 3)!/((8*n^2 + 10*n + 3)*(n!)^2*(3*n + 2)!)):
-
Mathematica
Array[(5*# + 3)!/((8*#^2 + 10*# + 3)*(#!)^2*(3*# + 2)!) &, 16, 0] (* Michael De Vlieger, May 03 2025 *)
Formula
a(n) = A383453(2*n, n), conjectured by Wildberger-Rubine to be the main diagonal of the Geode Bi-Tri array G[m_2, m_3].
a(n) ~ 3^(-3*n-5/2)*5^(5*n+7/2)/(16*n^2*Pi). - Stefano Spezia, May 03 2025