A383465 a(n) = 25*n^2/2 - 11*n/2 + 1.
1, 8, 40, 97, 179, 286, 418, 575, 757, 964, 1196, 1453, 1735, 2042, 2374, 2731, 3113, 3520, 3952, 4409, 4891, 5398, 5930, 6487, 7069, 7676, 8308, 8965, 9647, 10354, 11086, 11843, 12625, 13432, 14264, 15121, 16003, 16910, 17842, 18799, 19781, 20788, 21820, 22877, 23959, 25066, 26198, 27355, 28537, 29744, 30976, 32233, 33515, 34822
Offset: 0
Links
- N. J. A. Sloane, Illustration for n=1: a 5-chain that divides the plane into a(1) = 8 regions. Two of the line segments are infinite.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
A row of the array in A386478.
Programs
-
Mathematica
a[n_]:= 25*n^2/2 - 11*n/2 + 1;Array[a,54,0] (* or *) LinearRecurrence[{3,-3,1},{1,8,40},54] (* or *) CoefficientList[Series[(19*x^2+5*x+1)/(1-x)^3,{x,0,53}],x] (* James C. McMahon, Jul 16 2025 *)
Formula
G.f.: (19*x^2+5*x+1)/(1-x)^3. - Alois P. Heinz, Jul 16 2025
Comments