A383474 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(2,0),(3,0),(0,1),(0,2),(0,3).
1, 1, 1, 2, 2, 2, 4, 5, 5, 4, 7, 12, 14, 12, 7, 13, 26, 37, 37, 26, 13, 24, 56, 89, 106, 89, 56, 24, 44, 118, 209, 277, 277, 209, 118, 44, 81, 244, 477, 698, 784, 698, 477, 244, 81, 149, 499, 1063, 1700, 2113, 2113, 1700, 1063, 499, 149, 274, 1010, 2329, 4026, 5469, 6040, 5469, 4026, 2329, 1010, 274
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 2, 4, 7, 13, 24, ... 1, 2, 5, 12, 26, 56, 118, ... 2, 5, 14, 37, 89, 209, 477, ... 4, 12, 37, 106, 277, 698, 1700, ... 7, 26, 89, 277, 784, 2113, 5469, ... 13, 56, 209, 698, 2113, 6040, 16497, ... 24, 118, 477, 1700, 5469, 16497, 47332, ...
Crossrefs
Programs
-
PARI
a(n, k) = my(x='x+O('x^(n+1)), y='y+O('y^(k+1))); polcoef(polcoef(1/(1-x-y-x^2-y^2-x^3-y^3), n), k);
Formula
A(n,k) = A(k,n).
A(n,k) = A(n-1,k) + A(n-2,k) + A(n-3,k) + A(n,k-1) + A(n,k-2) + A(n,k-3).
G.f.: 1 / (1 - x - y - x^2 - y^2 - x^3 - y^3).