cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383481 Coefficient of x^n in the expansion of 1 / (1-x-x^4)^n.

Original entry on oeis.org

1, 1, 3, 10, 39, 156, 630, 2556, 10431, 42823, 176748, 732810, 3049722, 12732188, 53299284, 223645200, 940355391, 3961092906, 16712516565, 70615352330, 298761296064, 1265504676810, 5366250376710, 22777466596560, 96768003904650, 411451657313931, 1750809473690436, 7455339422353396
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2025

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(binomial(n+k-1,k)*binomial(2*n-3*k-1,n-4*k),k=0..n/4) end proc:
    map(f, [$0..40]);  # Robert Israel, May 28 2025
  • PARI
    a(n, s=4, t=1, u=0) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n+k-1,k) * binomial(2*n-3*k-1,n-4*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^4) ).