cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383489 a(n) is the number of divisors d_i(m) for which a divisor d_j(m) exists such that d_i(m) < d_j(m) < sigma(d_i(m)) where m = A383488(n).

Original entry on oeis.org

1, 1, 1, 4, 2, 5, 3, 2, 6, 2, 1, 7, 2, 1, 8, 1, 6, 7, 1, 6, 8, 1, 2, 1, 1, 1, 8, 1, 4, 1, 11, 4, 1, 7, 1, 6, 11, 5, 1, 6, 8, 3, 11, 1, 1, 3, 13, 1, 1, 10, 1, 5, 5, 6, 3, 9, 12, 4, 1, 7, 1, 6, 4, 1, 15, 1, 13, 1, 1, 4, 11, 1, 10, 1, 6, 11, 1, 1, 1, 14, 4, 2, 13
Offset: 1

Views

Author

Felix Huber, May 08 2025

Keywords

Examples

			The a(4) = 4 divisors d_i(A383488(4)) = d_i(24) are 4, 6, 8 and 12 because sigma(4) = 7 > 6, sigma(6) = 12 > 8, sigma(8) = 15 > 12 and sigma(12) = 28 > 24.
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A383488:=proc(n)
        option remember;
        local k,i,L;
        if n=1 then
            12
        else
            for k from procname(n-1)+1 do
                L:=Divisors(k);
                for i to nops(L)-1 do
                    if sigma(L[i])>L[i+1] then
                        return k
                    fi
                od
            od
        fi;
    end proc;
    A383489:=proc(n)
        local a,i,L;
        L:=Divisors(A383488(n));
        a:=0;
        for i to nops(L)-1 do
            if sigma(L[i])>L[i+1] then
                a:=a+1
            fi
        od;
        return a
    end proc;
    seq(A383489(n),n=1..83);