A383509 Number of Look-and-Say partitions of n that are not section-sum partitions.
0, 0, 0, 0, 1, 2, 1, 3, 4, 4, 7, 9, 11, 18, 25, 30, 41, 55, 63, 87, 98, 125, 147, 192, 213, 271, 313, 389, 444, 551, 621, 767, 874, 1055, 1209, 1444, 1646, 1965, 2244, 2644, 2991
Offset: 0
Examples
The a(4) = 1 through a(11) = 9 partitions: 211 221 21111 2221 422 22221 442 222221 2111 22111 22211 222111 4222 322211 211111 221111 2211111 222211 332111 2111111 21111111 322111 422111 2221111 2222111 22111111 3221111 211111111 22211111 221111111 2111111111 Conjugates of the a(4) = 1 through a(11) = 9 partitions: (3,1) (3,2) (5,1) (4,3) (5,3) (5,4) (6,4) (6,5) (4,1) (5,2) (6,2) (6,3) (7,3) (7,4) (6,1) (7,1) (7,2) (8,2) (8,3) (3,3,1,1) (8,1) (9,1) (9,2) (6,3,1) (10,1) (3,3,2,2) (6,3,2) (4,4,1,1) (6,4,1) (7,3,1) (6,3,1,1)
Crossrefs
Ranking sequences are shown in parentheses below.
These partitions are ranked by (A383516).
Programs
-
Mathematica
disjointFamilies[y_]:=Select[Tuples[IntegerPartitions /@ Length/@Split[y]],UnsameQ@@Join@@#&]; conj[y_]:=If[Length[y]==0,y, Table[Length[Select[y,#>=k&]], {k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n], disjointFamilies[#]!={}&&disjointFamilies[conj[#]]=={}&]], {n,0,30}]
Comments