cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383519 Number of section-sum partitions of n that have all distinct multiplicities (Wilf).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 7, 9, 12, 14, 19, 21, 27, 30, 33, 41, 50, 57, 68, 79, 89, 112, 126, 144, 172, 198, 220, 257, 298, 327, 383, 423, 477, 533, 621, 650, 760, 816, 920, 1013
Offset: 0

Views

Author

Gus Wiseman, May 19 2025

Keywords

Comments

An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091).

Examples

			The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (1111)  (11111)  (222)     (331)      (332)
                                     (411)     (511)      (611)
                                     (3111)    (4111)     (2222)
                                     (111111)  (31111)    (5111)
                                               (1111111)  (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

Ranking sequences are shown in parentheses below.
For Look-and-Say instead of section-sum we have A098859 (A130091), conjugate (A383512).
For non Wilf instead of Wilf we have A383506 (A383514).
These partitions are ranked by (A383520).
A000041 counts integer partitions, strict A000009.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],disjointFamilies[conj[#]]!={}&&UnsameQ@@Length/@Split[#]&]],{n,0,15}]