A383519 Number of section-sum partitions of n that have all distinct multiplicities (Wilf).
1, 1, 2, 2, 3, 3, 6, 7, 9, 12, 14, 19, 21, 27, 30, 33, 41, 50, 57, 68, 79, 89, 112, 126, 144, 172, 198, 220, 257, 298, 327, 383, 423, 477, 533, 621, 650, 760, 816, 920, 1013
Offset: 0
Examples
The a(1) = 1 through a(8) = 9 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (311) (33) (322) (44) (1111) (11111) (222) (331) (332) (411) (511) (611) (3111) (4111) (2222) (111111) (31111) (5111) (1111111) (41111) (311111) (11111111)
Crossrefs
Ranking sequences are shown in parentheses below.
These partitions are ranked by (A383520).
Programs
-
Mathematica
disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],disjointFamilies[conj[#]]!={}&&UnsameQ@@Length/@Split[#]&]],{n,0,15}]
Comments