cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383539 a(n) = Sum_{k=0..floor(n/3)} binomial(n-k,k)^2 * binomial(n-2*k,k).

Original entry on oeis.org

1, 1, 1, 5, 19, 49, 137, 481, 1645, 5259, 17309, 59477, 203931, 693865, 2384149, 8277773, 28797631, 100312525, 350891175, 1232122535, 4335809699, 15287669469, 54029225569, 191351513905, 678850904981, 2412164275651, 8584573648693, 30595269827149
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2025

Keywords

Comments

Diagonal of the rational function 1 / ((1-x)*(1-y)*(1-z) - x^2*y^2*z^3).

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(binomial(n-k,k)^2 * binomial(n-2*k,k),k=0..n/3) end proc:
    map(f, [$0..30]); # Robert Israel, May 29 2025
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-k, k)^2*binomial(n-2*k, k));

A383526 a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(n-2*k,k)^2.

Original entry on oeis.org

1, 1, 1, 4, 17, 46, 112, 365, 1297, 4126, 12686, 41647, 141440, 470887, 1553021, 5205769, 17665105, 59858038, 202599814, 689183087, 2355887902, 8065291637, 27637715887, 94924591313, 326810899744, 1126888746871, 3890420726167, 13450563963085, 46571447873597
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2025

Keywords

Comments

Diagonal of the rational function 1 / ((1-x)*(1-y)*(1-z) - x*y^3*z^3).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n, k)*binomial(n-2*k, k)^2);
Showing 1-2 of 2 results.