cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A383512 Heinz numbers of conjugate Wilf partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85
Offset: 1

Views

Author

Gus Wiseman, May 13 2025

Keywords

Comments

First differs from A364347 in having 130 and lacking 110.
First differs from A381432 in lacking 65 and 133.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The terms together with their prime indices begin:
     1: {}           17: {7}            35: {3,4}
     2: {1}          19: {8}            37: {12}
     3: {2}          20: {1,1,3}        38: {1,8}
     4: {1,1}        22: {1,5}          39: {2,6}
     5: {3}          23: {9}            40: {1,1,1,3}
     7: {4}          25: {3,3}          41: {13}
     8: {1,1,1}      26: {1,6}          43: {14}
     9: {2,2}        27: {2,2,2}        44: {1,1,5}
    10: {1,3}        28: {1,1,4}        45: {2,2,3}
    11: {5}          29: {10}           46: {1,9}
    13: {6}          31: {11}           47: {15}
    14: {1,4}        32: {1,1,1,1,1}    49: {4,4}
    15: {2,3}        33: {2,5}          50: {1,3,3}
    16: {1,1,1,1}    34: {1,7}          51: {2,7}
		

Crossrefs

Partitions of this type are counted by A098859.
The conjugate version is A130091, complement A130092.
Including differences of 0 gives A325367, counted by A325324.
The strict case is A325388, counted by A320348.
The complement is A383513, counted by A336866.
Also requiring distinct multiplicities gives A383532, counted by A383507.
These are the positions of strict rows in A383534, or squarefree numbers in A383535.
A000040 lists the primes, differences A001223.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A325349 counts partitions with distinct augmented differences, ranks A325366.
A383530 counts partitions that are not Wilf or conjugate Wilf, ranks A383531.
A383709 counts Wilf partitions with distinct augmented differences, ranks A383712.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], UnsameQ@@DeleteCases[Differences[Prepend[prix[#],0]],0]&]

A383513 Heinz numbers of non conjugate Wilf partitions.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 110, 114, 120, 126, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246
Offset: 1

Views

Author

Gus Wiseman, May 13 2025

Keywords

Comments

First differs from A381433 in having 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   12: {1,1,2}
   18: {1,2,2}
   21: {2,4}
   24: {1,1,1,2}
   30: {1,2,3}
   36: {1,1,2,2}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   65: {3,6}
   66: {1,2,5}
   70: {1,3,4}
   72: {1,1,1,2,2}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
		

Crossrefs

Partitions of this type are counted by A336866.
The conjugate version is A130092, complement A130091.
Including differences of 0 gives complement of A325367, counted by A325324.
The strict case is the complement of A325388, counted by A320348.
The complement is A383512, counted by A098859.
Also forbidding distinct multiplicities gives A383531, counted by A383530.
These are positions of non-strict rows in A383534, or nonsquarefree numbers in A383535.
A000040 lists the primes, differences A001223.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A383507 counts partitions that are Wilf and conjugate Wilf, ranks A383532.
A383709 counts Wilf partitions with distinct augmented differences, ranks A383712.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!UnsameQ@@DeleteCases[Differences[Prepend[prix[#],0]],0]&]

A383534 Irregular triangle read by rows where row n lists the positive first differences of the 0-prepended prime indices of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 2, 5, 1, 1, 6, 1, 3, 2, 1, 1, 7, 1, 1, 8, 1, 2, 2, 2, 1, 4, 9, 1, 1, 3, 1, 5, 2, 1, 3, 10, 1, 1, 1, 11, 1, 2, 3, 1, 6, 3, 1, 1, 1, 12, 1, 7, 2, 4, 1, 2, 13, 1, 1, 2, 14, 1, 4, 2, 1, 1, 8, 15, 1, 1, 4, 1, 2, 2, 5, 1, 5, 16, 1, 1, 3, 2
Offset: 1

Views

Author

Gus Wiseman, May 20 2025

Keywords

Comments

Also differences of distinct 0-prepended prime indices of n.

Examples

			The prime indices of 140 are {1,1,3,4}, zero prepended {0,1,1,3,4}, differences (1,0,2,1), positive (1,2,1).
Rows begin:
    1: ()        16: (1)        31: (11)
    2: (1)       17: (7)        32: (1)
    3: (2)       18: (1,1)      33: (2,3)
    4: (1)       19: (8)        34: (1,6)
    5: (3)       20: (1,2)      35: (3,1)
    6: (1,1)     21: (2,2)      36: (1,1)
    7: (4)       22: (1,4)      37: (12)
    8: (1)       23: (9)        38: (1,7)
    9: (2)       24: (1,1)      39: (2,4)
   10: (1,2)     25: (3)        40: (1,2)
   11: (5)       26: (1,5)      41: (13)
   12: (1,1)     27: (2)        42: (1,1,2)
   13: (6)       28: (1,3)      43: (14)
   14: (1,3)     29: (10)       44: (1,4)
   15: (2,1)     30: (1,1,1)    45: (2,1)
		

Crossrefs

Row-lengths are A001221, sums A061395.
Rows start with A055396, end with A241919.
For multiplicities instead of differences we have A124010 (prime signature).
Including difference 0 gives A287352, without prepending A355536.
Positions of first appearances of rows are A358137.
Positions of strict rows are A383512, counted by A098859.
Positions of non-strict rows are A383513, counted by A336866.
Heinz numbers of rows are A383535.
Restricting to rows of squarefree index gives A384008.
Without prepending we get A384009.
A000040 lists the primes, differences A001223.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A320348 counts strict partitions with distinct 0-appended differences, ranks A325388.
A325324 counts partitions with distinct 0-appended differences, ranks A325367.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[DeleteCases[Differences[Prepend[prix[n],0]],0],{n,100}]

Formula

a(A005117(n)) = A384008(n).

A384008 Irregular triangle read by rows where row n lists the first differences of the 0-prepended prime indices of the n-th squarefree number.

Original entry on oeis.org

1, 2, 3, 1, 1, 4, 1, 2, 5, 6, 1, 3, 2, 1, 7, 8, 2, 2, 1, 4, 9, 1, 5, 10, 1, 1, 1, 11, 2, 3, 1, 6, 3, 1, 12, 1, 7, 2, 4, 13, 1, 1, 2, 14, 1, 8, 15, 2, 5, 16, 3, 2, 2, 6, 1, 9, 17, 18, 1, 10, 3, 3, 1, 1, 3, 19, 2, 7, 1, 2, 1, 20, 21, 1, 11, 4, 1, 1, 1, 4, 22, 1, 12, 23, 3, 4
Offset: 1

Views

Author

Gus Wiseman, May 23 2025

Keywords

Comments

All rows are different.

Examples

			The 28-th squarefree number is 42, with 0-prepended prime indices (0,1,2,4), with differences (1,1,2), so row 28 is (1,1,2).
The squarefree numbers and corresponding rows begin:
    1: ()        23: (9)        47: (15)
    2: (1)       26: (1,5)      51: (2,5)
    3: (2)       29: (10)       53: (16)
    5: (3)       30: (1,1,1)    55: (3,2)
    6: (1,1)     31: (11)       57: (2,6)
    7: (4)       33: (2,3)      58: (1,9)
   10: (1,2)     34: (1,6)      59: (17)
   11: (5)       35: (3,1)      61: (18)
   13: (6)       37: (12)       62: (1,10)
   14: (1,3)     38: (1,7)      65: (3,3)
   15: (2,1)     39: (2,4)      66: (1,1,3)
   17: (7)       41: (13)       67: (19)
   19: (8)       42: (1,1,2)    69: (2,7)
   21: (2,2)     43: (14)       70: (1,2,1)
   22: (1,4)     46: (1,8)      71: (20)
		

Crossrefs

Row-lengths are A072047, sums A243290.
This is the restriction of A383534 (ranked by A383535) to rows of squarefree index.
A000040 lists the primes, differences A001223.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A320348 counts strict partitions with distinct 0-appended differences, ranks A325388.
A325324 counts partitions with distinct 0-appended differences, ranks A325367.

Programs

  • Mathematica
    sql=Select[Range[100],SquareFreeQ];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Differences[Prepend[prix[sql[[n]]],0]],{n,Length[sql]}]
Showing 1-4 of 4 results.