A383541 Positive numbers k such that (cos k)^k sets a new record.
1, 6, 19, 22, 710, 1146408, 10838702, 80143857, 245850922, 411557987, 1068966896
Offset: 1
Examples
The first few values of (cos k)^k, k >= 1, are: cos(1)^1 = 0.540302305868139 cos(2)^2 = 0.173178189568194 cos(3)^3 = -0.97027693792150 cos(4)^4 = 0.182542548055270 cos(5)^5 = 0.001836568887601 cos(6)^6 = 0.783591241730686 cos(7)^7 = 0.138422055397017 cos(8)^8 = 0.000000200865224 cos(9)^9 = -0.43273721139612 and the record high points are at k = 1, 6, 19, ...
Programs
-
Mathematica
Module[{x, y, runningMax = 0, positions = {}}, x = Range[1, 10^6]; y = Cos[x]^x; Do[If[y[[i]] > runningMax, runningMax = y[[i]]; AppendTo[positions, i]; ], {i, Length[y]}]; positions ]
-
Python
import numpy as np x = np.arange(1, 1+10**8) y = np.cos(x) ** x A383541 = sorted([1+int(np.where(y==m)[0][0]) for m in set(np.maximum.accumulate(y))])
Formula
Conjecture: a(n) = A002485(n+7) for n >= 9. - Jakub Buczak, May 05 2025
Extensions
a(9)-a(11) from Jakub Buczak, May 05 2025