A383585 Number of vertices of even degree in a cubic lattice n X n X n.
0, 0, 13, 32, 63, 112, 185, 288, 427, 608, 837, 1120, 1463, 1872, 2353, 2912, 3555, 4288, 5117, 6048, 7087, 8240, 9513, 10912, 12443, 14112, 15925, 17888, 20007, 22288, 24737, 27360, 30163, 33152, 36333, 39712, 43295, 47088, 51097, 55328, 59787, 64480, 69413, 74592, 80023, 85712, 91665, 97888
Offset: 1
Examples
a(4) = 2^3 + 12*2 = 32; a(5) = 3^3 + 12*3 = 63.
Links
- Nicolay Avilov, A technique for counting
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A000578.
Programs
-
Mathematica
a[n_] := n^3 - 6*n^2 + 24*n - 32; a[1] = 0; Array[a, 48] (* Amiram Eldar, May 13 2025 *)
Formula
a(n) = n^3 - 6*n^2 + 24*n - 32 for n >= 2.
From Chai Wah Wu, May 19 2025: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 5.
G.f.: x^3*(13*x^2 - 20*x + 13)/(x - 1)^4. (End)
Comments