cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A381846 Area of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000108(n) and its long leg and hypotenuse are consecutive natural numbers.

Original entry on oeis.org

0, 0, 6, 180, 4914, 142926, 4547796, 157355484, 5842280730, 229795151586, 9475645552620, 406294220860710, 18000809380947036, 820011973477512900, 38258534425043501640, 1822437060664227775020, 88405827105467677196970, 4358079981772447955690490, 217935769988152202470568700
Offset: 0

Views

Author

Keywords

Examples

			For n=3, the short leg is A383615(3,1) = 3 and the long leg is A383615(3,2) = 4  so the area is then a(4) = (3 * 4)/2 = 6.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.

Crossrefs

Programs

  • Mathematica
    a=Table[(2n)!/(n!(n+1)!),{n,0,18}];Apply[Join,Map[{#(#-1)(2#-1)}&,a]]

Formula

a(n) = (A383615(n,1) * A383615(n,2))/2.
a(n) = (2n)!/(n!(n+1)!)*((2n)!/(n!(n+1)!) - 1)*(2*(2n)!/(n!(n+1)!) - 1).

A383615 Length of the long leg of the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 = A000108(n) and its long leg and hypotenuse are consecutive natural numbers.

Original entry on oeis.org

4, 40, 364, 3444, 34584, 367224, 4086940, 47268364, 564177640, 6911470020, 86537568264, 1103799334200, 14305253278320, 187980019758360, 2500329584942460, 33615542888998620, 456277454520102600, 6246438361923425820, 86175353763393711960, 1197196443738946826760
Offset: 2

Views

Author

Keywords

Examples

			Triangles begin:
  n=2:      3,     4,     5;
  n=3:      9,    40,    41.
This sequence is column 2.
		

Crossrefs

Cf. A000108, A131428 (short leg), A383616 (semiperimeter), A381846 (area).

Formula

a(n) = 2*C(n)*(C(n) - 1) where C(n) = A000108(n).

A383958 Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000108(n) and its long leg and hypotenuse are consecutive natural numbers.

Original entry on oeis.org

1, 1, 7, 49, 391, 3527, 34847, 368081, 4089799, 47278087, 564211231, 6911587591, 86537984287, 1103800819999, 14305258627199, 187980039148049, 2500329655657799, 33615543148288199, 456277455475379999, 6246438365457952199, 86175353776521952799, 1197196443787879360799, 16738118900293300099199
Offset: 0

Views

Author

Keywords

Examples

			For n=3, the short leg is A383615(3,1) = 3 and the long leg is A383615(3,2) = 4 so the sum of the legs is then a(3) = 3 + 4 = 7.
		

Crossrefs

Programs

  • Mathematica
    a=Table[(2n)!/(n!(n+1)!),{n,0,23}];Apply[Join,Map[{2#^2-1}&,a]]

Formula

a(n) = A383615(n,1) + A383615(n,2).
a(n) = 2*A000108(n)^2 - 1.
a(n) = 2*A001246(n) - 1.
Showing 1-3 of 3 results.