cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383620 Number of weak compositions of n such that the set of adjacent differences is a subset of {-1,1}.

Original entry on oeis.org

1, 4, 5, 9, 13, 20, 30, 45, 66, 102, 152, 229, 344, 518, 780, 1180, 1775, 2676, 4037, 6088, 9182, 13852, 20891, 31512, 47536, 71706, 108166, 163172, 246140, 371303, 560118, 844943, 1274606, 1922767, 2900522, 4375493, 6600511, 9956990, 15020307, 22658428
Offset: 0

Views

Author

John Tyler Rascoe, May 02 2025

Keywords

Examples

			a(0) = 1: (0).
a(1) = 4: (0,1), (0,1,0), (1,0), (1).
...
a(4) = 13: (0,1,0,1,0,1,0,1), (0,1,0,1,0,1,0,1,0), (1,0,1,0,1,0,1,0), (1,0,1,0,1,0,1), (0,1,0,1,2), (1,0,1,2), (2,1,0,1,0), (2,1,0,1), (0,1,2,1,0), (0,1,2,1), (1,2,1,0), (1,2,1), (4).
		

Crossrefs

Programs

  • PARI
    M(k) = matrix(k+1,k+1, i,j, if(i==j,1,if(i==j-1, -x^(i-1), if(i==j+1, -x^(i-1), 0))))
    A_x(N) = {my(k=N+1,x='x+O('x^k)); Vec(vecsum(M(k)^(-1) * vector(k+1,i,x^(i-1))~))}
    A_x(10)