A383655 Triangle read by rows: T(n,k) is the number of n-node Stanley graphs containing exactly k isolated points, n>=0, 0<=k<=n.
1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 11, 8, 6, 0, 1, 72, 55, 20, 10, 0, 1, 677, 432, 165, 40, 15, 0, 1, 8686, 4739, 1512, 385, 70, 21, 0, 1, 152191, 69488, 18956, 4032, 770, 112, 28, 0, 1, 3632916, 1369719, 312696, 56868, 9072, 1386, 168, 36, 0, 1, 118317913, 36329160, 6848595, 1042320, 142170, 18144, 2310, 240, 45, 0, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 1, 0, 1; 2, 3, 0, 1; 11, 8, 6, 0, 1; 72, 55, 20, 10, 0, 1; ...
Links
- David Bevan, Gi-Sang Cheon and Sergey Kitaev, On naturally labelled posets and permutations avoiding 12-34, arXiv:2311.08023 [math.CO], 2023.
- D. E. Knuth, Letter to Daniel Ullman and others, Apr 29 1997 [Annotated scanned copy, with permission].
Programs
-
Mathematica
nn = 10; g[x_] :=Total[Table[Sum[QBinomial[n, k, 2] x^n/n!, {k, 0, n}], {n, 0, nn}]]; Table[(Range[0, nn]! CoefficientList[Series[Exp[y x] Exp[-x] g[x] Exp[-x], {x, 0, nn}], {x, y}])[[i, 1 ;; i]], {i, 1, nn + 1}] // Grid
Formula
E.g.f.: exp((y-1)*x)*f(x) where f(x) is the e.g.f. for A135922.
Comments