A383660 Number of closed knight's tours in the first 2n cells of a 3 X ceiling(2n/3) board.
4, 0, 4, 24, 16, 56, 306, 176, 456, 2632, 1536, 4828, 26788, 15424, 44952, 254288, 147728, 448032, 2502568, 1448416, 4310048, 24228704, 14060048, 42195584, 236335248, 136947616, 409403328, 2297294496, 1332257856, 3989883552, 22366625344, 12965578752, 38798663104, 217604833360, 126169362176
Offset: 11
Keywords
Examples
For n=11 the a(11)=4 solutions are 1 4 7 10 17 20 15 12 6 9 2 21 14 11 18 3 22 5 8 19 16 13 ; 1 4 7 14 11 20 9 18 6 15 2 21 8 17 12 3 22 5 16 13 10 19 ; 1 4 21 12 15 6 17 8 20 11 2 5 18 9 14 3 22 19 10 13 16 7 ; 1 4 21 18 9 6 11 14 20 17 2 5 12 15 8 3 22 19 16 7 10 13 .
References
- Donald E. Knuth, Hamiltonian paths and cycles, Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).
Links
- Don Knuth, Table of n, a(n) for n = 11..150
- Don Knuth, CWEB program with input parameter board,100,3,0,0,5,0,0.gb [the graph "board(50, 6, 0, 0, 5, 0, 0)" generated by the Stanford GraphBase.
Formula
a(3n) = A070030(n).
Comments