A383710 Number of integer partitions of n such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part.
0, 0, 1, 1, 3, 4, 6, 10, 15, 22, 29, 42, 59, 79, 108, 140, 190, 247, 324, 417, 541
Offset: 0
Examples
For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is not counted under a(6). The a(2) = 1 through a(8) = 15 partitions: (11) (111) (22) (221) (222) (322) (332) (211) (311) (411) (331) (422) (1111) (2111) (2211) (511) (611) (11111) (3111) (2221) (2222) (21111) (3211) (3221) (111111) (4111) (3311) (22111) (4211) (31111) (5111) (211111) (22211) (1111111) (32111) (41111) (221111) (311111) (2111111) (11111111)
Crossrefs
Programs
-
Mathematica
pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&]; Table[Length[Select[IntegerPartitions[n], pof[#]=={}&]], {n,0,15}]
Comments