A383715 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^floor((k+1)/2) * A099927(n,k).
1, 1, -1, 1, -2, -1, 1, -5, -5, 1, 1, -12, -30, 12, 1, 1, -29, -174, 174, 29, -1, 1, -70, -1015, 2436, 1015, -70, -1, 1, -169, -5915, 34307, 34307, -5915, -169, 1, 1, -408, -34476, 482664, 1166438, -482664, -34476, 408, 1, 1, -985, -200940, 6791772, 39618670, -39618670, -6791772, 200940, 985, -1
Offset: 0
Examples
Triangle starts: 1; 1, -1; 1, -2, -1; 1, -5, -5, 1; 1, -12, -30, 12, 1; 1, -29, -174, 174, 29, -1; 1, -70, -1015, 2436, 1015, -70, -1; 1, -169, -5915, 34307, 34307, -5915, -169, 1; ...
Programs
-
PARI
pell(n) = ([2, 1; 1, 0]^n)[2, 1]; p(n, k) = prod(j=0, k-1, pell(n-j)); a099927(n, k) = p(n, k)/p(k, k); T(n, k) = (-1)^((k+1)\2)*a099927(n, k);
Formula
Let f(n, x) be defined as f(n, x) = Sum_{k=0..n} T(n,k) * x^k.
f(n, x) = exp( -Sum_{k>=1} Pell(n*k)/Pell(k) * x^k/k ).
Sum_{k>=0} A099927(n+k,n) * x^k = 1/f(n+1, x).