cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383728 Numbers k such that omega(k) = 4 and the largest prime factor of k equals the sum of its remaining distinct prime factors, where omega(k) = A001221(k).

Original entry on oeis.org

3135, 6279, 8855, 9405, 10695, 11571, 15675, 16095, 17255, 17391, 18837, 20615, 20735, 26691, 28083, 28215, 31031, 32085, 34485, 34713, 36519, 41151, 41615, 43953, 44275, 45695, 46655, 47025, 47859, 48285, 48495, 50439, 52173, 53475, 54131, 56511, 56823, 57239, 59295, 59565
Offset: 1

Views

Author

Paolo Xausa, May 08 2025

Keywords

Examples

			32085 is a term because it has 4 distinct prime factors (3, 5, 23 and 31) and the largest one is the sum of the others (3 + 5 + 23 = 31).
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    P:= select(isprime,[2,seq(i,i=3..N/(3*5*7),2)]):
    V:= NULL:
    for j from 1 while P[j]^3*(3*P[j]) < N do
      for k from j+1 while P[j]*P[k]^2*(P[j]+2*P[k]) < N do
        for l from k+1 while P[j]*P[k]*P[l] * (P[j]+P[k]+P[l]) <= N do
          p4:= P[j]+P[k]+P[l];
          if not isprime(p4) then next fi;
          for d1 from 1 while P[j]^d1 * P[k] * P[l] * p4 <= N do
           for d2 from 1 while P[j]^d1 * P[k]^d2 * P[l] * p4 <= N do
            for d3 from 1 while P[j]^d1 * P[k]^d2 * P[l]^d3  * p4 <= N do
             for d4 from 1 while  P[j]^d1 * P[k]^d2 * P[l]^d3 * p4^d4 <= N do
                 V:= V,P[j]^d1 * P[k]^d2 * P[l]^d3 * p4^d4
    od od od od od od od:
    sort([V]); # Robert Israel, Jun 09 2025
  • Mathematica
    A383728Q[k_] := Length[#] == 4 && Total[Most[#]] == Last[#] & [FactorInteger[k][[All, 1]]];
    Select[Range[10^5], A383728Q]