cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383747 Consider the polynomial P(m,z) = Sum_{k=1..r} d(k)*z^(k-1) where d(1) < d(2) < ... < d(r) are the r divisors of m. The sequence lists the numbers m such that P(m,z) contains at least three zeros of the form -1/q, i/q, -i/q, for some integer q, i = sqrt(-1).

Original entry on oeis.org

8, 27, 88, 104, 125, 128, 136, 152, 184, 232, 248, 296, 328, 343, 344, 376, 424, 472, 488, 536, 568, 584, 632, 664, 712, 776, 783, 808, 824, 837, 856, 872, 904, 968, 999, 1016, 1048, 1096, 1107, 1112, 1161, 1192, 1208, 1256, 1269, 1304, 1331, 1336, 1352, 1384, 1431
Offset: 1

Views

Author

Michel Lagneau, May 08 2025

Keywords

Comments

Subsequence of A291127.
The corresponding integers q are in A383748.

Examples

			  n   m  P(m,z)                                  3 zeros of P(m,z)
  1   8  1+2z+4z^2+8z^3                          -1/2, -i/2, i/2
  2  27  1+3z+9z^2+27z^3                         -1/3, -i/3, i/3
  3  88  1+2z+4z^2+8z^3+11z^4+22z^5+44z^6+88z^7  -1/2, -i/2, i/2
		

Crossrefs

Programs

  • Maple
    with(numtheory) :
    A:=proc(n) local P, Q, i, q, d, ii:
    d:=divisors(n):P:=add(op(i,d)*x^(i-1),i=1..nops(d)):
    ii:=0:for q from 1 to 10^4 while (ii=0) do:
    Q:=(x+1/q)*(x^2+1/q^2):
    if divide(P,Q,'R') then ii:=1:
    A(n):=n:else fi:od:end proc:
    seq(A(n), n=1..2500);