A383755 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = 3^(n-k) * T(n-1,k-1) + 4^k * T(n-1,k) with T(n,k) = n^k if n*k=0.
1, 1, 1, 1, 7, 1, 1, 37, 37, 1, 1, 175, 925, 175, 1, 1, 781, 19525, 19525, 781, 1, 1, 3367, 375661, 1776775, 375661, 3367, 1, 1, 14197, 6828757, 144142141, 144142141, 6828757, 14197, 1, 1, 58975, 119609725, 10884484975, 48575901517, 10884484975, 119609725, 58975, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 7, 1; 1, 37, 37, 1; 1, 175, 925, 175, 1; 1, 781, 19525, 19525, 781, 1; 1, 3367, 375661, 1776775, 375661, 3367, 1; ...
Programs
-
PARI
T(n, k) = if(n*k==0, n^k, 3^(n-k)*T(n-1, k-1)+4^k*T(n-1, k));
-
Sage
def a_row(n): return [3^(k*(n-k))*q_binomial(n, k, 4/3) for k in (0..n)] for n in (0..8): print(a_row(n))
Formula
T(n,k) = 3^(k*(n-k)) * q-binomial(n, k, 4/3).
T(n,k) = 4^(n-k) * T(n-1,k-1) + 3^k * T(n-1,k).
T(n,k) = T(n,n-k).
G.f. of column k: x^k * exp( Sum_{j>=1} f((k+1)*j)/f(j) * x^j/j ), where f(j) = 4^j - 3^j.