cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A383781 Primes where successively deleting the most significant digit yields a sequence that alternates between a prime and a nonprime at every step until a single-digit number remains.

Original entry on oeis.org

2, 3, 5, 7, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 127, 157, 163, 193, 227, 233, 257, 263, 277, 293, 433, 457, 463, 487, 557, 563, 577, 587, 593, 677, 727, 733, 757, 787, 827, 857, 863, 877, 887, 977, 1129, 1171, 1231, 1259, 1279, 1289, 1319, 1361, 1429, 1459
Offset: 1

Views

Author

Stefano Spezia, May 09 2025

Keywords

Comments

Is this sequence infinite?
See A383782 and the comment therein. - Michael S. Branicky, May 11 2025

Examples

			127 is a term since 127 is a prime, 27 is a nonprime, and 7 is a prime;
13 is not a term since 13 and 3 are both prime.
		

Crossrefs

Programs

  • Mathematica
    Unprotect[CompositeQ]; CompositeQ[1]:=True; Protect[CompositeQ]; Q[n_]:=And[AllTrue[FromDigits/@Table[Take[IntegerDigits[n], -i], {i,IntegerLength[n],1,-2}], PrimeQ], AllTrue[FromDigits/@Table[Take[IntegerDigits[n], -i], {i,IntegerLength[n]-1,1,-2}], CompositeQ]]; Select[Prime[Range[240]], Q]
  • Python
    from gmpy2 import is_prime, mpz
    from itertools import count, islice
    def agen():
        olst, elst = [2, 3, 5, 7], [11, 19, 29, 31, 41, 59, 61, 71, 79, 89]
        for n in count(1):
            yield from sorted(olst + elst)
            olst2, elst2 = [], []
            for o in olst:
                o, base = o, 10**(2*n-1)
                for i in range(10*base, 100*base, base):
                    t = i + o
                    t2 = int(str(t)[1:])
                    if is_prime(t) and not is_prime(t2):
                        olst2.append(t)
            for e in elst:
                e, base = e, 10**(2*n)
                for i in range(10*base, 100*base, base):
                    t = i + e
                    t2 = int(str(t)[1:])
                    if is_prime(t) and not is_prime(t2):
                        elst2.append(t)
            olst, elst = olst2, elst2
    print(list(islice(agen(), 68))) # Michael S. Branicky, May 11 2025
Showing 1-1 of 1 results.