A383783 a(n) = Sum_{k=1..2^n} mu(k) * (floor(2^n/k)^4 - floor((2^n-1)/k)^4).
1, 14, 160, 1520, 13216, 110144, 899200, 7266560, 58425856, 468583424, 3753379840, 30045900800, 240442679296, 1923843375104, 15391954862080, 123140470538240, 985143091265536, 7881222038749184, 63050085546065920, 504401921315962880, 4035220318323736576
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..48
Programs
-
Mathematica
a[n_]:=Sum[MoebiusMu[k]*(Floor[2^n/k]^4-Floor[(2^n-1)/k]^4),{k,2^n}]; Array[a,21,0] (* James C. McMahon, May 10 2025 *)
-
PARI
a(n) = sum(k=1, 2^n, moebius(k) * ((2^n\k)^4 - ((2^n-1)\k)^4)); \\ Michel Marcus, May 10 2025
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A082540(n): if n == 0: return 0 c, j = 1, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*A082540(k1) j, k1 = j2, n//j2 return n*(n**3-1)-c+j def A383783(n): return A082540(m:=1<
A082540(m-1)