cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383783 a(n) = Sum_{k=1..2^n} mu(k) * (floor(2^n/k)^4 - floor((2^n-1)/k)^4).

Original entry on oeis.org

1, 14, 160, 1520, 13216, 110144, 899200, 7266560, 58425856, 468583424, 3753379840, 30045900800, 240442679296, 1923843375104, 15391954862080, 123140470538240, 985143091265536, 7881222038749184, 63050085546065920, 504401921315962880, 4035220318323736576
Offset: 0

Views

Author

Chai Wah Wu, May 09 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[MoebiusMu[k]*(Floor[2^n/k]^4-Floor[(2^n-1)/k]^4),{k,2^n}]; Array[a,21,0] (* James C. McMahon, May 10 2025 *)
  • PARI
    a(n) = sum(k=1, 2^n, moebius(k) * ((2^n\k)^4 - ((2^n-1)\k)^4)); \\ Michel Marcus, May 10 2025
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A082540(n):
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A082540(k1)
            j, k1 = j2, n//j2
        return n*(n**3-1)-c+j
    def A383783(n): return A082540(m:=1<A082540(m-1)
    

Formula

a(n) = A344597(2^n) = A082540(2^n) - A082540(2^n-1).