cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A383810 Primes which satisfy the requirements of A380943 in more than one way.

Original entry on oeis.org

373, 1913, 3733, 6737, 7937, 11353, 13997, 19937, 19997, 23773, 24113, 29347, 31181, 31193, 31907, 34729, 37277, 38237, 41593, 47293, 59929, 71971, 72719, 73823, 74177, 79337, 79613, 82373, 83773, 83911, 88397, 100913, 103997
Offset: 1

Views

Author

Keywords

Comments

The requirements of A380943 are that primes, written in decimal representation by the concatenation of primes p and q such that the concatenation of q and p also forms a prime.
The number of terms <= 10^k beginning with k=1: 0, 0, 1, 5, 31, 285, 930, 5625, 28137, 205416, ....

Examples

			373 is a member since 373 is the 74th prime, p=3 and q=73, and the reverse concatenation is 733 which is the 130th prime. In another way, p=37 and q=3 and the reverse concatenation is 337, the 68th prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{cnt = 0, id = IntegerDigits@ n, k = 1, len, p, q, qp}, len = Length@ id; While[k < len, p = Take[id, k]; q = Take[id, -len + k]; qp = FromDigits[ Join[q, p]]; If[ PrimeQ[FromDigits[p]] && PrimeQ[FromDigits[q]] && PrimeQ[qp] && IntegerLength[qp] == len, cnt++]; k++]; cnt]; Select[ Prime@ Range@ 10000, f@# > 1 &]

A383812 Primes which satisfy the requirements of A380943 in exactly three ways.

Original entry on oeis.org

19937, 103997, 377477, 577937, 738677, 739397, 877937, 2116397, 3110273, 3314513, 3343337, 3634313, 3833359, 5935393, 7147397, 7276337, 7511033, 7699157, 7723337, 11816911, 14713613, 19132213, 19132693, 19998779, 22739317, 23201359, 31189757, 31614377, 31669931, 31687151
Offset: 1

Views

Author

Keywords

Comments

The requirements of A380943 are that primes, p_n, written in decimal representation by the concatenation of primes p and q such that the concatenation of q and p also forms a prime.
The number of terms <= 10^k beginning with k=1: 0, 0, 0, 0, 1, 7, 19, 70, 299, 1872, ..., .

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{cnt = 0, id = IntegerDigits@ n, k = 1, len, p, q, qp}, len = Length@ id; While[k < len, p = Take[id, k]; q = Take[id, -len + k]; qp = FromDigits[ Join[q, p]]; If[ PrimeQ[FromDigits[p]] && PrimeQ[FromDigits[q]] && PrimeQ[qp] && IntegerLength[qp] == len, cnt++]; k++]; cnt];Select[ Prime@ Range@ 1980000, f@# == 3 &]

A383813 Primes which satisfy the requirements of A380943 in exactly four ways.

Original entry on oeis.org

257931013, 1394821313, 2699357347, 3122419127, 3132143093, 3647381953, 3736320359, 3799933727, 6130099337, 7622281937, 7943701397, 7991407367
Offset: 1

Views

Author

Keywords

Comments

The requirements of A380943 are that primes, p_n, written in decimal representation by the concatenation of primes p and q such that the concatenation of q and p also forms a prime.
The number of terms <= 10^k beginning with k=1: 0, 0, 0, 0, 0, 0, 0, 1, 12, ..., .

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{cnt = 0, id = IntegerDigits@ n, k = 1, len, p, q, qp}, len = Length@ id; While[k < len, p = Take[id, k]; q = Take[id, -len + k]; qp = FromDigits[ Join[q, p]]; If[ PrimeQ[FromDigits[p]] && PrimeQ[FromDigits[q]] && PrimeQ[qp] && IntegerLength[qp] == len, cnt++]; k++]; cnt];Select[ Prime@ Range@ 10000000, f@# == 4 &]

A383815 Palindromic primes in A380943.

Original entry on oeis.org

313, 373, 797, 11311, 13331, 13931, 17971, 19991, 31013, 35353, 36263, 36563, 38783, 71317, 79397, 97379, 98389, 1129211, 1196911, 1611161, 1793971, 1982891, 3106013, 3166613, 3193913, 3236323, 3288823, 3304033, 3319133, 3329233, 3365633, 3417143, 3447443, 3449443, 3515153, 3670763
Offset: 1

Views

Author

Keywords

Comments

A380943 requires that primes, p_n, written in decimal representation by the concatenation of primes p and q such that the concatenation of q and p also forms a prime.
Intersection of A002385 and A380943.

Examples

			The palindromic prime 313 is formed by the concatenation of the primes 31 and 3, which reversed, also form the prime 331. The palindromic prime 13931 is formed by the concatenation of 139 and 31; 31139 is also prime.
		

Crossrefs

Programs

  • Maple
    rev:= proc(n) local L,i;
       L:= convert(n,base,10);
       add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    tcat:= proc(x,y) y + 10^(ilog10(y)+1)*x end proc:
    filter:= proc(z) local i,x,y;
      if not isprime(z) then return false fi;
      for i from 1 to ilog10(z) do
        x:= z mod 10^i;
        if x < 10^(i-1) then next fi;
        y:= (z-x)/10^i;
        if isprime(x) and isprime(y) and isprime(tcat(x,y)) then return true fi;
      od;
      false
    end proc:
    N:= 7: # for terms of up to 7 digits
    R:= NULL:
    for d from 1 to (N-1)/2 do
      for x from 10^(d-1) to 10^d-1 do
        for y from 0 to 9 do
          z:= rev(x) + 10^d * y + 10^(d+1)*x;
          if filter(z) then R:= R,z fi
    od od od:
    R;  # Robert Israel, Jun 08 2025
  • Mathematica
    f[n_] := Block[{cnt = 0, id = IntegerDigits@ n, k = 1, len, p, q, qp}, len = Length@ id; While[k < len, p = Take[id, k]; q = Take[id, -len + k]; qp = FromDigits[Join[q, p]]; If[ PrimeQ@ FromDigits@ p && PrimeQ@ FromDigits@ q && PrimeQ@ qp && IntegerLength@ qp == len, cnt++]; k++]; cnt]; fQ[n_] := Reverse[idn = IntegerDigits@ n] == idn && f@ n > 0; Select[ Prime@ Range@ 264000, fQ]

A383814 Least number which satisfies the requirements of A380943 in exactly n ways.

Original entry on oeis.org

2, 37, 373, 19937, 257931013, 4199993923
Offset: 0

Views

Author

Keywords

Comments

The requirements of A380943 are that primes, p_n, written in decimal representation by the concatenation of primes p and q such that the concatenation of q and p also forms a prime.

Examples

			See the examples in A383810 through A383813.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{cnt = 0, id = IntegerDigits@ n, k = 1, len, p, q, qp}, len = Length@ id; While[k < len, p = Take[id, k]; q = Take[id, -len + k]; qp = FromDigits[ Join[q, p]]; If[ PrimeQ[FromDigits[p]] && PrimeQ[FromDigits[q]] && PrimeQ[qp] && IntegerLength[qp] == len, cnt++]; k++]; cnt];a[n_]:=Module[{k=1},While[f[Prime[k]]!=n,k++];Prime[k]];Array[a,4,0]
Showing 1-5 of 5 results.