A383819 Decimal expansion of -Sum_{k>=1} mu(3*k)/(27^k + 1), where mu is the Möbius function.
0, 3, 4, 3, 4, 4, 3, 5, 2, 9, 1, 3, 2, 7, 8, 1, 7, 5, 2, 8, 8, 8, 2, 7, 5, 2, 9, 0, 3, 4, 4, 9, 6, 9, 3, 1, 4, 1, 9, 9, 4, 4, 2, 0, 3, 2, 9, 7, 5, 2, 1, 0, 4, 9, 5, 4, 4, 8, 0, 3, 9, 8, 6, 3, 4, 3, 9, 1, 5, 3, 9, 1, 9, 4, 8, 1, 0, 2, 0, 7, 3, 3, 9, 5, 4, 4, 6, 3, 0, 0, 2, 7, 4, 5, 6, 4, 8, 7, 7, 4, 3, 0, 1, 7, 5, 0, 4, 4, 1, 8, 2
Offset: 0
Examples
0.034344352913278175288827529...
Programs
-
Mathematica
Join[{0}, RealDigits[NSum[1/3^(3^k) - 2/3^(2*3^k), {k, 1, Infinity}, WorkingPrecision -> 120]][[1]]] (* Amiram Eldar, May 16 2025 *)
-
PARI
-sum(k=1,logint(2^getlocalbitprec(),3)+1,moebius(3*k)/(27.^k + 1),0.) \\ Bill Allombert
Formula
Equals Sum_{k>=1} (1/3^(3^k) - 2/3^(2*3^k)). - Amiram Eldar, May 16 2025