cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383820 Decimal expansion of Sum_{k>=1} 1/3^(3^k).

Original entry on oeis.org

0, 3, 7, 0, 8, 7, 8, 4, 2, 3, 0, 0, 5, 9, 3, 4, 6, 5, 1, 6, 2, 4, 0, 9, 8, 5, 6, 0, 7, 7, 9, 3, 4, 7, 6, 7, 6, 4, 4, 7, 9, 5, 2, 6, 3, 4, 5, 1, 2, 7, 2, 0, 0, 1, 4, 8, 2, 0, 5, 5, 2, 6, 9, 4, 4, 8, 2, 1, 0, 5, 3, 4, 4, 9, 8, 2, 4, 0, 1, 8, 2, 3, 2, 2, 6, 7, 7, 2, 3, 9, 2, 4, 3, 1, 0, 0, 7, 9, 4, 9, 4, 8, 2, 3, 8, 5
Offset: 0

Views

Author

Artur Jasinski, May 16 2025

Keywords

Comments

The real root of the cubic polynomial 243*x^3 - 27*x^2 - 242*x + 9 matches this constant to 20 decimal places.

Examples

			0.037087842300593465162409856...
		

Crossrefs

Programs

  • Mathematica
    sum = Sum[1/3^(3^n), {n, 1, Infinity}]; nsum = N[sum, 110]; RealDigits[nsum, 10, 105][[1]]
  • PARI
    -sum(k=1,logint(2^getlocalbitprec(),3)+1,moebius(3*k)/(27.^k - 1),0.) \\ Bill Allombert
    
  • PARI
    suminf(k=1, 1/3^(3^k)) \\ Amiram Eldar, May 16 2025

Formula

Equals -Sum_{k>=1} mu(3*k)/(27*k-1), where mu is the Möbius function A008683.
Equals A383817 - 1/3.