A245254 Decimal expansion of U = Product_{k>=1} (k^(1/(k*(k+1)))), a Khintchine-like limiting constant related to Lüroth's representation of real numbers.
2, 2, 0, 0, 1, 6, 1, 0, 5, 8, 0, 9, 9, 0, 2, 6, 5, 5, 3, 1, 9, 4, 5, 5, 7, 8, 6, 6, 5, 5, 9, 9, 4, 4, 8, 7, 2, 6, 8, 5, 6, 6, 2, 3, 2, 4, 7, 5, 2, 7, 2, 3, 8, 8, 8, 7, 2, 3, 1, 4, 5, 1, 1, 7, 7, 6, 3, 1, 6, 9, 0, 1, 1, 2, 6, 9, 6, 6, 5, 9, 4, 7, 5, 8, 4, 7, 0, 2, 9, 7, 3, 4, 7, 2, 6, 8, 0, 7, 6, 2, 5, 8, 1, 6, 1
Offset: 1
Examples
2.200161058099026553194557866559944872685662324752723888723145117763169...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.
Links
- Sofia Kalpazidou, Khintchine's constant for Lüroth representation, Journal of Number Theory, Vol. 29, No. 2 (June 1988), pp. 196-205.
Programs
-
Maple
evalf(exp(Sum((Zeta(n+1)-1)/n, n=1..infinity)), 120); # Vaclav Kotesovec, Dec 11 2015
-
Mathematica
Exp[NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 5000, Method -> {NIntegrate, MaxRecursion -> 100}]] (* Vaclav Kotesovec, Dec 11 2015 *)
Formula
Equals exp(A085361).
Equals e * A085291. - Amiram Eldar, Jun 27 2021
Equals 1/A242624. - Amiram Eldar, Feb 06 2022
Extensions
Corrected by Vaclav Kotesovec, Dec 11 2015
Comments