cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A245254 Decimal expansion of U = Product_{k>=1} (k^(1/(k*(k+1)))), a Khintchine-like limiting constant related to Lüroth's representation of real numbers.

Original entry on oeis.org

2, 2, 0, 0, 1, 6, 1, 0, 5, 8, 0, 9, 9, 0, 2, 6, 5, 5, 3, 1, 9, 4, 5, 5, 7, 8, 6, 6, 5, 5, 9, 9, 4, 4, 8, 7, 2, 6, 8, 5, 6, 6, 2, 3, 2, 4, 7, 5, 2, 7, 2, 3, 8, 8, 8, 7, 2, 3, 1, 4, 5, 1, 1, 7, 7, 6, 3, 1, 6, 9, 0, 1, 1, 2, 6, 9, 6, 6, 5, 9, 4, 7, 5, 8, 4, 7, 0, 2, 9, 7, 3, 4, 7, 2, 6, 8, 0, 7, 6, 2, 5, 8, 1, 6, 1
Offset: 1

Views

Author

Jean-François Alcover, Jul 15 2014

Keywords

Comments

The geometric mean of the Yule-Simon distribution with parameter value 1 (A383855) approaches this constant. In general, the geometric mean of the Yule-Simon distribution approaches Product_{k>=2} k^(1/(p*Beta(k,p+1))). - Jwalin Bhatt, May 12 2025

Examples

			2.200161058099026553194557866559944872685662324752723888723145117763169...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Maple
    evalf(exp(Sum((Zeta(n+1)-1)/n, n=1..infinity)), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    Exp[NSum[Log[k]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 5000, Method -> {NIntegrate, MaxRecursion -> 100}]] (* Vaclav Kotesovec, Dec 11 2015 *)

Formula

Equals exp(A085361).
U*V*W = 1, where V is A244109 and W is A131688.
Equals e * A085291. - Amiram Eldar, Jun 27 2021
Equals 1/A242624. - Amiram Eldar, Feb 06 2022

Extensions

Corrected by Vaclav Kotesovec, Dec 11 2015

A383899 A sequence constructed by greedily sampling the Yule-Simon distribution for parameter value 1, to minimize discrepancy selecting the smallest value in case of ties.

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 3, 1, 7, 1, 2, 1, 8, 1, 9, 1, 2, 1, 4, 1, 3, 1, 2, 1, 10, 1, 11, 1, 2, 1, 3, 1, 5, 1, 2, 1, 4, 1, 12, 1, 2, 1, 3, 1, 13, 1, 2, 1, 6, 1, 14, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 15, 1, 2, 1, 7, 1, 3, 1, 2, 1, 16, 1, 17
Offset: 1

Views

Author

Jwalin Bhatt, May 14 2025

Keywords

Comments

The geometric mean approaches A245254 in the limit.
The probability mass function of the Yule-Simon distribution with parameter 1 is given by p(k) = 1/(k*(k+1)) for k >= 1.

Examples

			Let p(k) denote the probability of k and c(k) denote the number of occurrences of k among the first n-1 terms; then the expected number of occurrences of k among n random terms is given by n*p(k).
We subtract the actual occurrences c(k) from the expected occurrences and pick the one with the highest value.
| n | n*p(1) - c(1) | n*p(2) - c(2) | n*p(3) - c(3) | choice |
|---|---------------|---------------|---------------|--------|
| 1 |     0.5       |     0.166     |     0.083     |   1    |
| 2 |     0         |     0.333     |     0.166     |   2    |
| 3 |     0.5       |    -0.5       |     0.25      |   1    |
| 4 |     0         |    -0.333     |     0.333     |   3    |
| 5 |     0.5       |    -0.166     |    -0.583     |   1    |
		

Crossrefs

Programs

  • Mathematica
    probCountDiff[j_, k_, count_]:=k/(j*(j+1))-Lookup[count, j, 0]
    samplePDF[n_]:=Module[{coeffs, unreachedVal, counts, k, probCountDiffs, mostProbable},
      coeffs=ConstantArray[0, n]; unreachedVal=1; counts=<||>;
      Do[probCountDiffs=Table[probCountDiff[i, k, counts], {i, 1, unreachedVal}];
        mostProbable=First@FirstPosition[probCountDiffs, Max[probCountDiffs]];
        If[mostProbable==unreachedVal, unreachedVal++]; coeffs[[k]]=mostProbable;
        counts[mostProbable]=Lookup[counts, mostProbable, 0]+1; , {k, 1, n}]; coeffs]
    A383899=samplePDF[120]
Showing 1-2 of 2 results.